VALOCTOCOGENE ROXAPARVOVEC GENE TRANSFER IN PARTICIPANTS WITH HIV

Margaret V Ragni,¹ Elaine Majerus,² Sylvia Fong,³ Bridget Yates,³ Stephen Scheeler,³ Lisa Razon,³ Su Liu,³ Hua Yu,³ Divya B Reddy,³ Tara M Robinson³

¹Medicine and Clinical and Translational Science, Department of Medicine, Division Hematology/Oncology, University of Pittsburgh Medical Center, Hemophilia Center of Western Pennsylvania, Pittsburgh, PA, USA; ²Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; ³BioMarin Pharmaceutical Inc., Novato, CA, USA

DISCLOSURE FOR MARGARET V RAGNI

In compliance with COI policy, EAHAD requires the following disclosures to the session audience:

Shareholder	No relevant conflicts of interest to declare		
Grant / Research Support	Alnylam/Sanofi, BioMarin Pharmaceutical Inc., Bioverativ/Sanofi, Spark Therapeutics, Takeda Pharmaceuticals USA		
Consultant	Alnylam/Sanofi, BioMarin Pharmaceutical Inc., Bioverativ/Sanofi, Spark Therapeutics, and Takeda Pharmaceuticals USA		
Employee	No relevant conflicts of interest to declare		
Paid Instructor	No relevant conflicts of interest to declare		
Speaker bureau	No relevant conflicts of interest to declare		
Other	Takeda Pharmaceuticals USA (receipt of study drug for investigator-initiated trials)		

Presentation includes discussion of the following off-label use of a drug or medical device: $\langle N/A \rangle$

INTRODUCTION AND OBJECTIVES

- Valoctocogene roxaparvovec transfers a B-domain deleted human FVIII coding sequence controlled by a hepatocyte-selective promoter using an AAV5 vector, enabling endogenous FVIII production^{1–4}
 - In a phase 3 trial, 132 men with severe haemophilia A and who were negative for HIV had significantly increased FVIII production and bleeding reduction through 52 weeks post-valoctocogene roxaparvovec gene transfer⁴
 - Participants with HIV were initially eligible, but were excluded by protocol amendment due to potential liver toxicity with concomitant HIV antiviral agents
- Transfusion-associated HIV infection is common in individuals with haemophilia A, and efficacy and safety of AAV-mediated gene transfer in people with HIV is unknown
- Here, we present safety and efficacy results from 3 men with HIV and haemophilia A who received valoctocogene roxaparvovec gene transfer in two phase 3 trials, specifically 301 (NCT03370913) and 302 (NCT03392974)

METHODS

- In both trials, eligible participants were men who were ≥18 years with severe haemophilia A (FVIII ≤1 IU/dL) previously receiving prophylactic exogenous FVIII and negative for inhibitors and anti-AAV5 antibodies
- Participants received a single infusion of valoctocogene roxaparvovec:
 - Participants in 301 received a $6x10^{13}$ vg/kg dose
 - The participant in 302 received a $4x10^{13}$ vg/kg dose
- Efficacy was assessed by a change from baseline in FVIII activity and annualised treated bleeding and exogenous FVIII usage after week 4, the scheduled end of regular FVIII prophylaxis
- Safety was assessed by AE type and frequency and clinical laboratory tests
- An in vitro hepatocyte model was used to investigate potential drug-drug interactions

RESULTS

Participant demographics and baseline characteristics

• Overall, 3 participants with HIV enrolled in 301 or 302

	Participant 1	Participant 2	Participant 3
Age at enrolment, years	52	49	45
History of hepatitis B exposure	Y	Y	Ν
History of hepatitis C exposure	Y	Y	Y
Number of problem joints	0	0	6
Baseline annualised FVIII use			
Infusions/year	80.0	118.8	101.7
IU/kg/year	3271.2	5249.1	5487.2
Baseline ABR (treated bleeds), bleeds/year	2.8	5.8	12.7
Baseline HAART regimen	Eviplera, dolutegravir	Darunavir, dolutegravir, ritonavir	Efavirenz, lamivudine, tenofovir disoproxil fumarate
Valoctocogene roxaparvovec dose, vg/kg	6x10 ¹³	6x10 ¹³	4x10 ¹³
Follow-up at data cutoff date, weeks	115	124	106

AAV, adeno-associated virus; AAV5, AAV serotype 5; ABR, annualised bleeding rate; AE, adverse event; FVIII, factor VIII; HAART, highly active anti-retroviral therapy; HIV, human immunodeficiency virus. 1. Rangarajan S, et al. NEIM. 2017;377:2519–30. 2. Pasi KJ, et al. NEIM. 2020;382:29–40. 3. Pasi KJ, et al. Haemophilia. 2020;26:151. 4. Ozelo MC, et al. RPTH. 2021;5 (suppl 1).

EFFICACY

- At week 52 post-gene therapy, Participants 1 and 2 had FVIII per CSA of 24.3 and 6.1 IU/dL, respectively
 - Both had reduced bleeding and FVIII utilization compared to baseline (Figure 1)
- At week 3, Participant 3 had FVIII activity of 11.5 IU/dL per CSA; between weeks 5 and 46, his FVIII ranged from <3 to 9.7 IU/dL
 - He had 16 treated bleeds during this period, and resumed routine FVIII prophylaxis on week 49

Figure 1. Participant 1 and 2 bleeding and FVIII use after week 4

- Participant 1 experienced 6 AEs of Grade ≤2; none were liver enzyme elevations
- Participant 2 experienced 50 Grade 1 AEs and 2 SAEs (upper respiratory infection; traumatic haematoma). AEs of Grade 1 elevated AST were reported on days 85 and 107. Prednisolone 60 mg/d was initiated on day 109, and AEs resolved
- Participant 3 reported 15 AEs, including Grade 3 SAEs of ALT increase and hepatocellular injury beginning on day 41 and resolving on day 105 (Figure 2)
 - He remained asymptomatic throughout, and extensive hepatic workups revealed no alternative etiologies

SAFETY

Figure 2. Liver function test results for Participant 3

EAHAD 2022

ABR, annualised bleeding rate; AE, adverse event; ALP, alkaline phosphatase; ALT, alanine aminotransferase; CSA, chromogenic substrate assay; FVIII; factor VIII; GGT, gamma-glutamyl transferase; HAART, highly active anti-retroviral therapy; HIV, human immunodeficiency virus; LDH, lactate dehydrogenase; SAE, serious AE; ULN, upper limit of normal.

IN VITRO DRUG-DRUG INTERACTION ANALYSIS

- ALT elevations for Participant 3 likely resulted from drug interactions between the efavirenz component of his HAART regimen and valoctocogene roxaparvovec
- An in vitro model of primary hepatocytes was used to further investigate this hypothesis
 - Hepatocytes were incubated with efavirenz and valoctocogene roxaparvovec, and cell death and transgene DNA and RNA were assessed; measurements were also taken 72 hours after efavirenz withdrawal
- Efavirenz was cytotoxic at doses 5x and 20x C_{max}, the estimated steady-state peak plasma level of the human dose; effects did not synergise with valoctocogene roxaparvovec (Figure 3)
- For hepatocytes incubated with valoctocogene roxaparvovec, efavirenz significantly decreased transgene RNA and RNA/DNA levels (Figure 4)

Figure 4. Transgene DNA and RNA with continuous efavirenz and 72 hours post-withdrawal

Figure 3. Efavirenz cytotoxicity

CONCLUSIONS

- After valoctocogene roxaparvovec gene transfer, 2 participants with HIV had increased FVIII expression and reduced bleeding. These participants had no or only Grade 1 liver function test AEs
- One participant with HIV had hepatic enzyme elevation unresponsive to corticosteroids, likely due to an interaction between gene therapy and efavirenz, a known hepatotoxic agent. This participant did not have sustained FVIII production post-gene therapy and, thus, resumed prophylaxis
- In vitro experiments with efavirenz confirmed its hepatoxicity and suggest it may inhibit FVIII-SQ transgene RNA production

*P <0.05; **P <0.01; ***P <0.001; ****P <0.0001

AAV, adeno-associated virus; AE, adverse event; ALT, alanine aminotransferase; C_{max}, maximum concentration; FVIII-SQ, factor VIII SQ variant; h, hour; HAART, highly active anti-retroviral therapy; HIV, human immunodeficiency virus; hr, hour; RPLPO, Large Ribosomal Protein.

EAHAD 2022