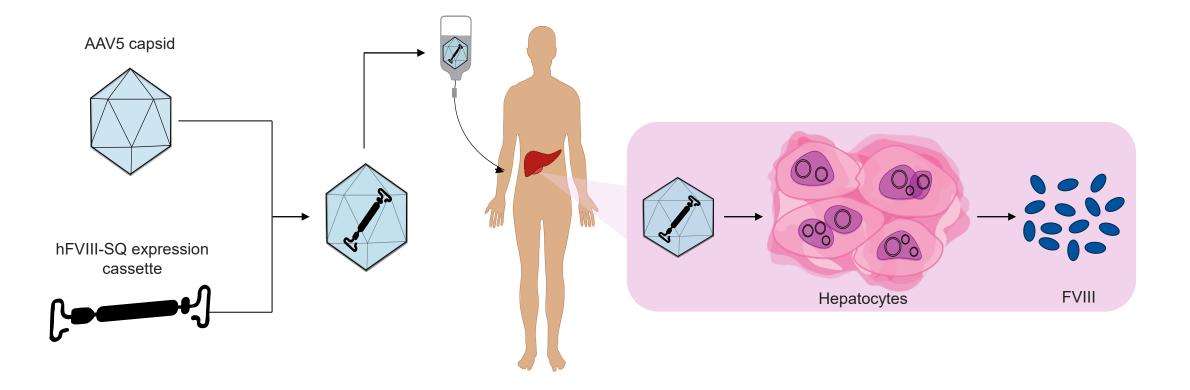
Health-Related Quality of Life Over 2 Years Following Valoctocogene Roxaparvovec Adeno-Associated Virus Gene Transfer For Severe Hemophilia A: Results From GENEr8-1

Amy L Dunn¹, Andrew D Leavitt², Flora Peyvandi^{3,4}, Hervé Chambost⁵, Erin Cockrell⁶, Rashid Kazmi⁷, Robert Klamroth⁸, Gillian Lowe⁹, Johnny Mahlangu¹⁰, Elaine Majerus¹¹, Brian O'Mahony^{12,13}, Margareth C Ozelo¹⁴, Mark W Skinner^{15,16}, Chee Wee Tan¹⁷, Huyen Tran¹⁸, Jiaan-Der Wang¹⁹, Hua Yu²⁰, Tara M Robinson²⁰, Jennifer Quinn²¹, Wing Yen Wong²⁰, Steven W Pipe²²

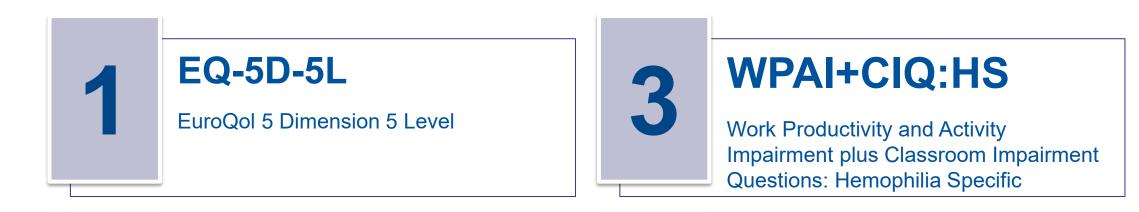
¹Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA; ²University of California San Francisco, San Francisco, CA, USA; ³Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy; ⁴Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy; ⁵AP-HM, Department of Pediatric Hematology Oncology, Children Hospital La Timone, Aix Marseille University, INSERM, INRA, C2VN, Marseille, France; ⁶Pediatric Hematology Oncology, Saint Joseph's Children's Hospital, Tampa, FL, USA; ⁷Department of Haematology, Southampton University Hospital, Southampton, UK; ⁸Comprehensive Care Haemophilia Treatment Center, Vivantes Klinikum im Friedrichshain, Berlin, Germany; ⁹West Midlands Comprehensive Care Haemophilia Centre, Queen Elizabeth Hospital, Birmingham, UK; ¹⁰Hemophilia Comprehensive Care Center, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersand and NHLS, Johannesburg, South Africa; ¹¹Department of Medicine, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; ¹⁵Institute for Policy Advancement Ltd, Washington, DC, USA; ¹⁶McMaster University, Hamilton, ON, Canada; ¹⁷Department of Haematology, Royal Adelaide Hospital, Adelaide, SA; Australia; ¹⁸Haemostasis & Thrombosis Unit, Haemophilia Treatment Centre, The Alfred Hospital, Melbourne, VIC, Australia; ¹⁹Center for Rare Disease and Hemophilia, Taichung Veterans General Hospital, Taichung, Taiwan; ²⁰BioMarin Pharmaceutical Inc., Novato, CA, USA; ²¹BioMarin UK Ltd, London, UK; ²²Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI, USA


WFH 2022 WORLD CONGRESS

Disclosures for: AMY L DUNN

Conflict	Disclosure - if conflict of interest exists
Research Support	Sanofi, Takeda, Freeline, BioMarin Pharmaceutical Inc, and ATHN
Director, Officer, Employee	Service on the board of the World Federation of Hemophilia, USA
Shareholder	
Honoraria	
Advisory Committee	
Consultant	BioMarin Pharmaceutical Inc, Genentech/Roche, Kedrion, CSL Behring, and uniQure

Valoctocogene roxaparvovec gene transfer for severe HA


GENEr8-1 phase 3 study¹

- · 134 adult men with severe HA
 - $_{\circ}~$ No inhibitors
 - $_{\circ}~$ No detectable antibodies to AAV5 capsid
- 6x10¹³ vg/kg valoctocogene roxaparvovec IV infusion
- 132 HIV-negative participants (mITT population)
- Endpoints
 - Annualized bleeding rate (primary)
 - FVIII activity (secondary)
 - 。 Exogenous FVIII use (secondary)
 - Quality of life (secondary and tertiary)

Baseline Characteristics	mITT (N = 132)
Age at enrollment, years (mean ± SD)	31.4 ± 10.1
Male sex	132 (100)
Race and ethnicity ^a	
White	94 (71.2)
Asian	19 (14.4)
Black or African American	15 (11.4)
Hawaiian or Pacific Islander	1 (0.8)
Not provided ^b	3 (2.3)
Hispanic or Latino ethnicity	7 (5.3)
Number of problem joints at study initia	ation ^c
0	95 (72.0)
1	17 (12.9)
2	9 (6.8)
3	8 (6.1)
>3	3 (2.3)
BMI, kg/m², (mean ± SD) ^d	25.3 ± 4.6

^aRace and ethnic group were reported by the participants. ^bDue to patient privacy laws. ^cProblem joints were identified by the investigators at baseline and were defined as joints with any of the following symptoms: chronic joint pain, chronic synovitis, hemophilic arthropathy, limited motion, or recurrent bleeding; ^dBMI is the weight in kilograms divided by the square of the height in meters. Data are n (%) unless otherwise indicated. BMI, body mass index; HA, hemophilia A; HIV, human immunodeficiency virus; IV, intravenous; mITT, modified intent-to-treat; SD, standard deviation. 1. Ozelo M et al. *N Engl J Med*. 2022;386(11):1013-1025

Quality of life questionnaires

Haemo-QOL-A

Haemophilia-specific Quality of Life Questionnaire for Adults HAL

Haemophilia Activities List

EQ-5D-5L

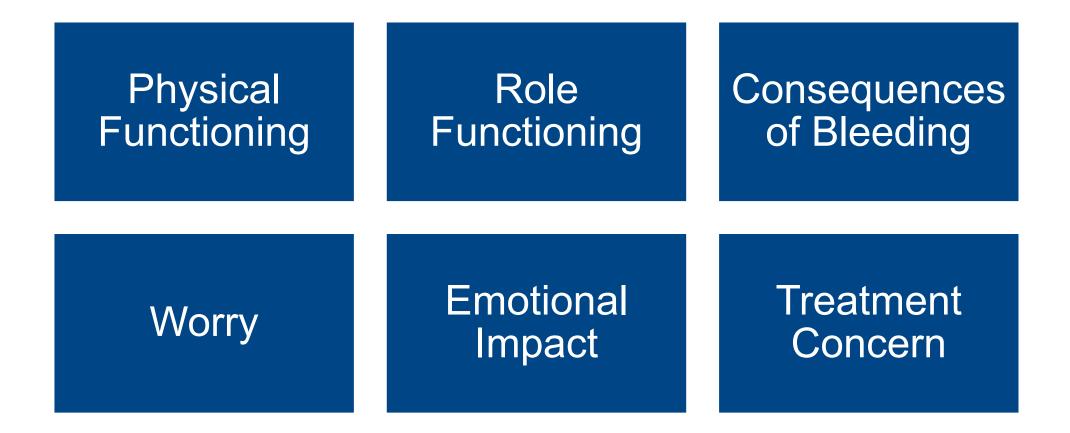
	mobility
	self-care
5 dimensions	usual activities
	pain/discomfort
	anxiety/depression
	no problems
	no problems slight problems
5 levels	
5 levels	slight problems
5 levels	slight problems moderate problems

Best health you can imagine

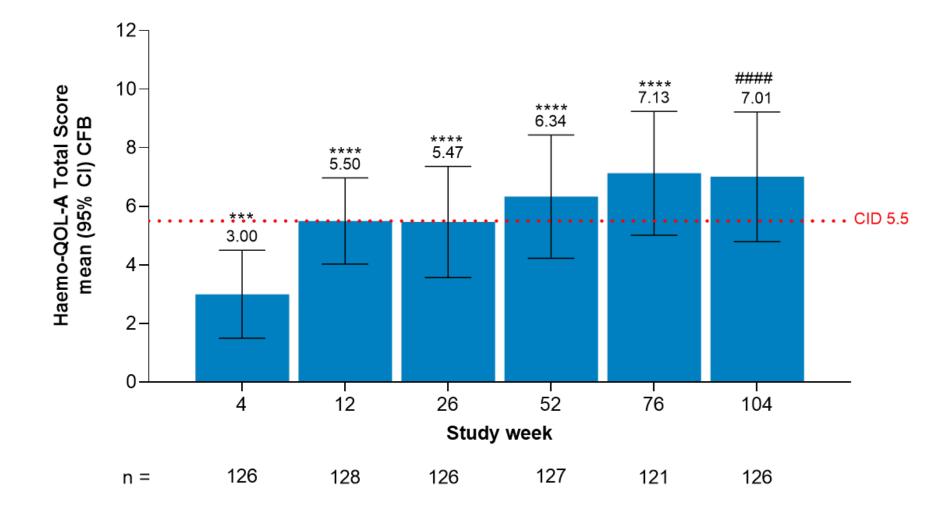
Worst health you can imagine

EQ-5D-5L VAS and Utility Index scores

EQ-5D-5L VAS

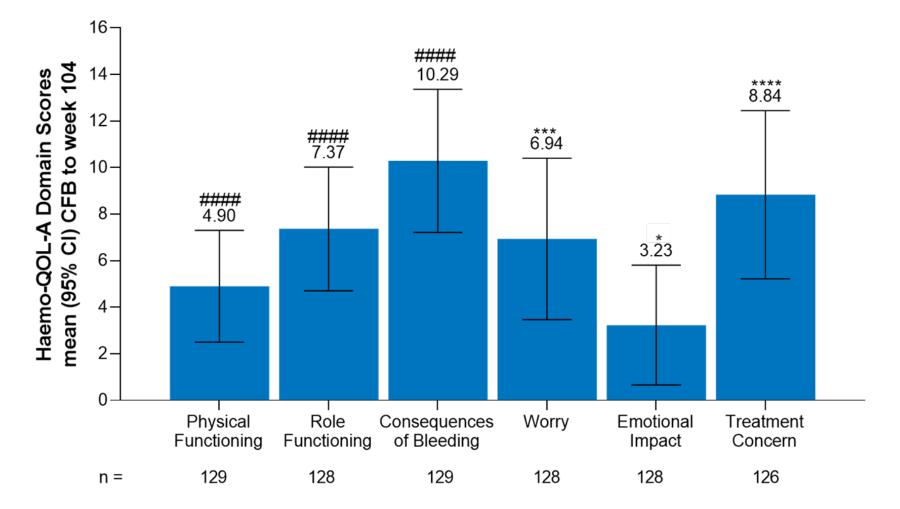

EQ-5D-5L Utility Index Score 10-0.10 mean (95% CI) CFB CI) CFB 8-0.08-EQ-5D-5L VAS 4.54 0.05 0.04 4.31 0.04 3.47 6-0.06-3.17 2.52 0.03 0.02 0.02 (95% 2.43 4 0.04mean CID 0.03 2 0.02 0 0.00 12 26 52 76 104 52 76 4 12 26 104 4 Study week Study week 129 129 127 127 129 129 n = 128 129 128 129 127 126 n =

EQ-5D-5L Utility Index Score


CFB data are based on participants with data at both time points.

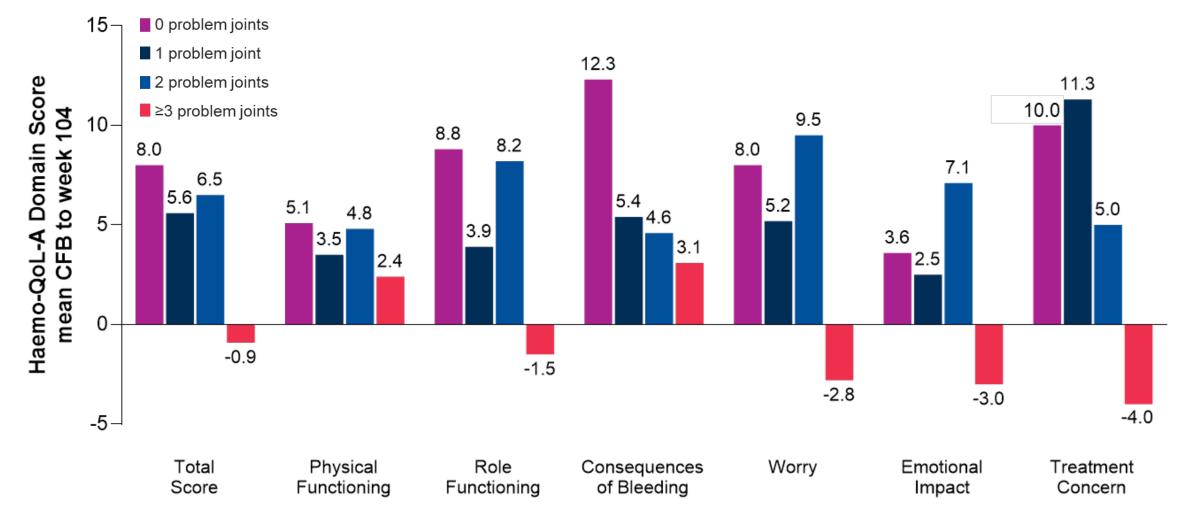
CFB, change from baseline; CI, confidence interval; CID, clinically important difference; EQ-5D-5L, EuroQol 5 Dimension 5 Level; SD, standard deviation; VAS, visual analogue scale.

Haemo-QOL-A domains


Haemo-QOL-A Total Score

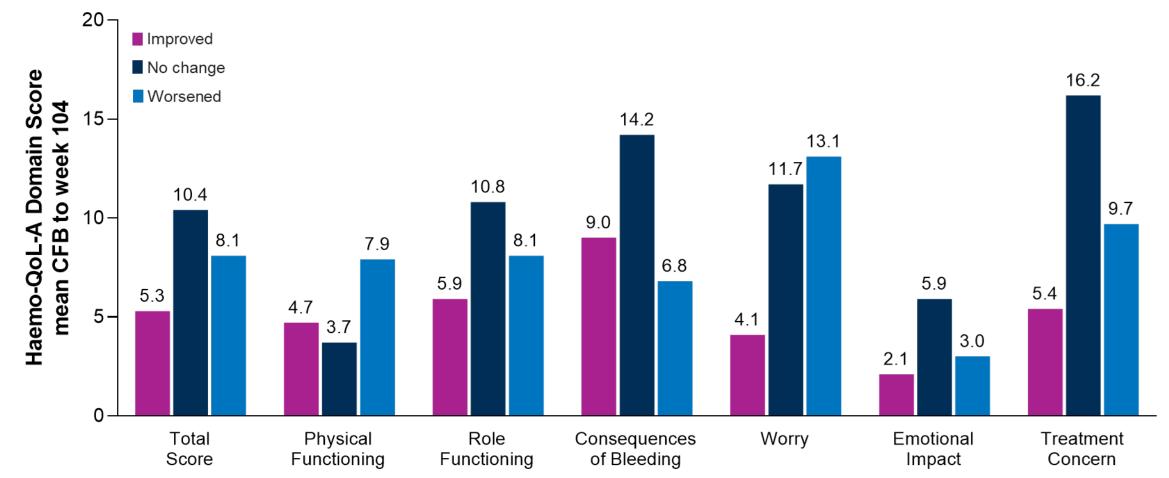
P <0.001 and *P <0.0001 were based on two-sided t-test of CFB vs 0 without controlling for multiplicity.###P <0.0001 based on two-sided t-test of CFB vs 0 performed as part of a hierarchical testing sequence controlling overall Type 1 error. CFB data are based on participants with data at both time points.

CFB, change from baseline; CI, confidence interval; CID, clinically important difference; Haemo-QOL-A, Haemophilia-specific Quality of Life Questionnaire for Adults.


Haemo-QOL-A Domain Scores

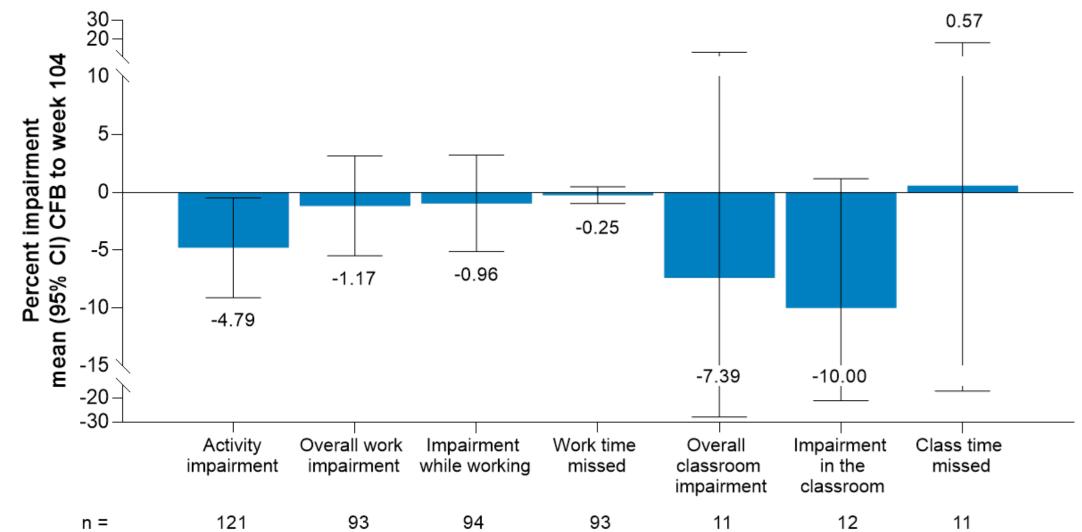
*P <0.05; ***P <0.001 and ****P <0.0001 were based on two-sided t-test of CFB vs 0 without controlling for multiplicity.^{###}P <0.0001 based on two-sided t-test of CFB vs 0 performed as part of a hierarchical testing sequence controlling overall Type 1 error. CFB data are based on participants with data at both time points.

CFB, change from baseline; CI, confidence interval; CID, clinically important difference; Haemo-QOL-A, Haemophilia-specific Quality of Life Questionnaire for Adults


Post hoc analysis by pre-existing problem joints

Change in Haemo-QOL-A domain scores were grouped by number of problem joints at baseline. Not all participants completed all domains. CFB data are based on participants with data at both time points. For the "0 problem joints " group with at baseline, n = 92–96; for the "1 problem joint" group, n = 16–17; for the "2 problem joint" group, n = 8; for the " \geq 3 problem joint" group, n = 10–11. CFB, change from baseline; Haemo-QOL-A, Haemophilia-specific Quality of Life Questionnaire for Adults.

11


Post hoc analysis by changes in bleeding rate

Change in Haemo-QOL-A domain scores were grouped by whether annualized rate of treated bleeds improved, worsened, or did not change from baseline to the data cutoff date. All participants with no change in bleed rate had rates of zero before and after gene transfer. Not all participants completed all domains. CFB data are based on participants with data at both time points. For the "Improved" group, n = 80–85; for the "No change" group, n = 35–36; for the "Worsened" group, n = 11.

CFB, change from baseline; Haemo-QOL-A, Haemophilia-specific Quality of Life Questionnaire for Adults.


WPAI+CIQ:HS scores

Data presented as mean (95% CI). CFB data are based on participants with data at both time points.

CFB, change from baseline; CI, confidence interval; WPAI+CIQ:HS, Work Productivity and Activity Impairment plus Classroom Impairment Questions: Hemophilia-Specific.

HAL summary and domain scores

Data presented as mean (95% CI). CFB data are based on participants with data at both time points. CFB, change from baseline; CI, confidence interval; HAL, Haemophilia Activities List.

Conclusions

Improvements in health-related quality of life were maintained through 2 years post gene transfer

An annualized treated bleed rate of zero on FVIII prophylaxis did not preclude appreciable, meaningful quality of life improvements for participants after gene transfer

Participants with pre-existing problem joints attained measurable quality of life improvements following gene transfer

>HAL and WPAI+CIQ:HS scores reflected decreased impairment and increased activity through 2 years post gene transfer

Acknowledgments

- Thank you to all the trial participants, their families, study site personnel, and the GENEr8-1 Trial Group
- Funding for this study was provided by BioMarin Pharmaceutical Inc
- Medical writing support was provided by Prachi Patil, MS, of AlphaBioCom, and funded by BioMarin Pharmaceutical Inc