Gesellschaft für Thromboseund Hämostaseforschung e.V.

GTH 2023

SYM-16

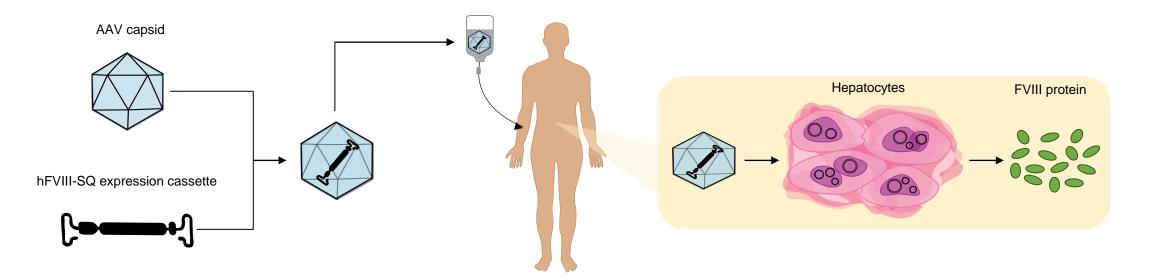
#240

Efficacy and safety of valoctocogene roxaparvovec gene transfer for severe hemophilia A: Results from the GENEr8-1 three-year analysis

Johnny Mahlangu¹, Annette von Drygalski², Susan Shapiro^{3,4,5}, Sheng-Chieh Chou⁶, Margareth C Ozelo⁷, Gili Kenet⁸, Flora Peyvandi^{9,10}, Bella Madan¹¹, Michael Laffan¹², Amy L Dunn¹³, Jane Mason^{14,15}, Doris V Quon¹⁶, Andrew D Leavitt¹⁷, Johannes Oldenburg¹⁸, Hervé Chambost¹⁹, Mark T Reding²⁰, Kala Jayaram²¹, Hua Yu²¹, Tara M Robinson²¹, Steven W Pipe²² for the GENEr8-1 Trial Group

¹Hemophilia Comprehensive Care Center, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand and NHLS, Johannesburg, South Africa; ²Department of Medicine, University of California San Diego, San Diego, CA, USA; ³Oxford University Hospitals National Health Service Foundation Trust, Oxford, UK; ⁴Radcliffe Department of Medicine, University of Oxford, Oxford, UK; ⁵Oxford National Institute for Health Research Biomedical Research Centre, Oxford, UK; ⁶Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; ⁷Hemocentro UNICAMP, Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; ⁸The National Hemophilia Center, and Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer, Tel Aviv University, Tel Aviv, Israel; 9Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy; ¹⁰Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy; ¹¹Guy's & St. Thomas' NHS Foundation Trust, London, UK; ¹²Centre for Haematology, Imperial College London, London, UK; ¹³Nationwide Children's Hospital Division of Haematology, Oncology and Bone Marrow Transplant and The Ohio State University College of Medicine, Columbus, OH, USA; ¹⁴Queensland Haemophilia Centre, Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; ¹⁵University of Queensland, Brisbane, QLD, Australia; ¹⁶Orthopaedic Hemophilia Treatment Center, Los Angeles, CA, USA; ¹⁷Adult Hemophilia Treatment Center, University of California San Francisco, San Francisco, CA, USA; ¹⁸Institute of Experimental Haematology and Transfusion Medicine and Center for Rare Diseases, University Hospital Bonn, Bonn, Germany; ¹⁹AP-HM, Department of Pediatric Hematology Oncology, Children Hospital La Timone, Aix Marseille University, INSERM, INRA, C2VN, Marseille, France; ²⁰Center for Bleeding and Clotting Disorders, University of Minnesota, Minneapolis, MN, USA; ²¹BioMarin Pharmaceutical Inc., Novato, CA, USA; ²²Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI, USA

Disclosure – conflict of interest



I have the following potential conflict(s) of interest to report

- Receipt of grants/research supports: BioMarin Pharmaceutical Inc., Novo Nordisk, Novartis, Pfizer, F. Hoffman-La Roche Ltd, Sanofi, Spark Therapeutics, and Takeda
- **Receipt of honoraria or consultation fees:** BioMarin Pharmaceutical Inc., LFB, Novo Nordisk, F. Hoffman-La Roche Ltd, Spark Therapeutics, and Takeda

Valoctocogene roxaparvovec for severe hemophilia A

- Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) transfers a FVIII coding sequence that enables endogenous FVIII production in people with severe hemophilia A (FVIII ≤1 IU/dL)^{1,2}
- In the global, open-label, phase 3 trial GENEr8-1, participants who received 6x10¹³ vg/kg valoctocogene roxaparvovec achieved FVIII activity that provided improved protection from bleeds compared with FVIII prophylaxis over 104 weeks^{1,2}
- Here, we present outcomes after 3 years post-gene transfer

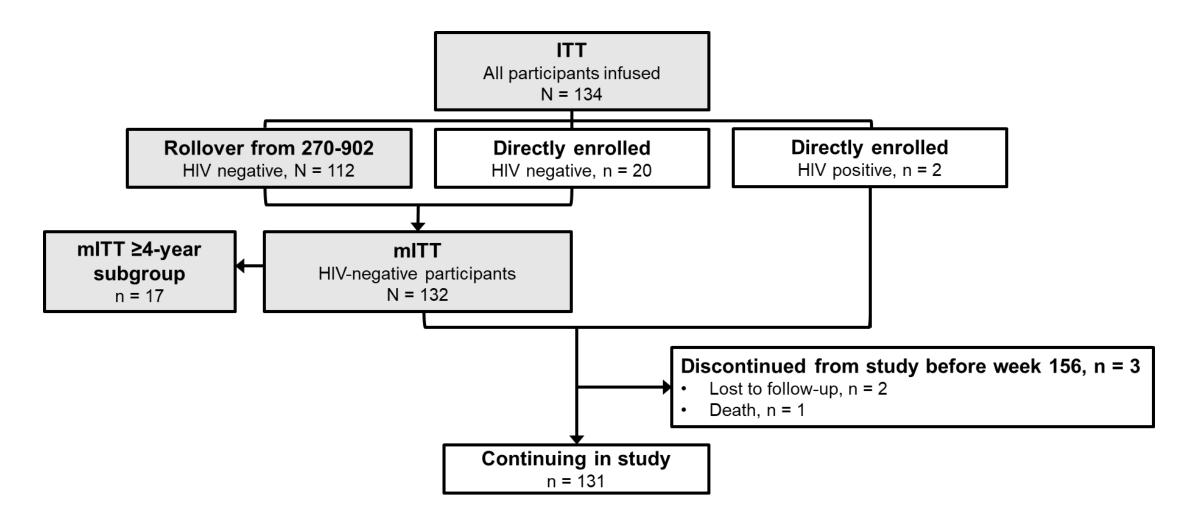
1. Ozelo M et al. N Engl J Med. 2022;386(11):1013-25. 2. Mahlangu J et al. Res Pract Thromb Haemost. 2022;6(Suppl 1):e12787.

3 AAV, adeno-associated virus; FVIII, factor VIII; hFVIII-SQ, human FVIII, SQ variant.

Phase 3 GENEr8-1 study design

Eligible participants (directly enrolled or rolling over from the non-interventional study BMN 270-902)

- Adult men with severe hemophilia A (FVIII ≤1 IU/dL)
- Previously receiving FVIII prophylaxis
- No history of FVIII inhibitors or anti-AAV5 antibodies
- No significant liver dysfunction, significant liver fibrosis, or cirrhosis


Endpoints

- Change from baseline during post-prophylaxis
 - Annualized bleeding rate (treated and all bleeds)

- Annualized FVIII utilization rate
- FVIII activity
- Safety

Participant disposition

Baseline demographics

Baseline characteristics	Rollover population N = 112	mlTT N = 132	ITT N = 134	mITT dosed ≥4 years ago n = 17
Age, years, mean ± SD	31.8 ± 10.6	31.4 ± 10.1	31.7 ± 10.3	29.5 ± 6.0
Race, n (%)				
White	78 (69.9)	94 (71.2)	96 (71.6)	14 (82.4)
Asian	17 (15.2)	19 (14.4)	19 (14.2)	1 (5.9)
Black or African American	14 (12.5)	15 (11.4)	15 (11.2)	1 (5.9)
Hawaiian or Pacific Islander	1 (0.9)	1 (0.8)	1 (0.7)	0
Not provided	2 (1.8)	3 (2.3)	3 (2.2)	1 (5.9)
Hispanic or Latino ethnicity, n (%)	5 (4.5)	7 (5.3)	7 (5.2)	1 (5.9)
BMI, kg/m ² , mean ± SD	25.2 ± 4.7	25.3 ± 4.6	25.3 ± 4.6	26.4 ± 3.8
Medical history, n (%)				
Hepatitis B	17 (15.2)	18 (13.6)	20 (14.9)	1 (5.9)
Hepatitis C	33 (29.5)	39 (29.5)	41 (30.6)	6 (35.3)
HIV	0	0	2 (1.5)	0
Number of problem joints, ^a n (%)				
0	82 (73.2)	95 (72.0)	97 (72.4)	10 (58.8)
1	13 (11.6)	17 (12.9)	17 (12.7)	4 (23.5)
2	9 (8.0)	9 (6.8)	9 (6.7)	0
3	6 (5.4)	8 (6.1)	8 (6.0)	2 (11.8)
>3	2 (1.8)	3 (2.3)	3 (2.2)	1 (5.9)

^aProblem joints were those with chronic joint pain, chronic synovitis, hemophilic arthropathy, limited motion, or recurrent bleeding.

6 BMI, body mass index; HIV, human immunodeficiency virus; ITT, intent-to-treat; mITT, modified intent-to-treat; SD, standard deviation.

Safety in year 3

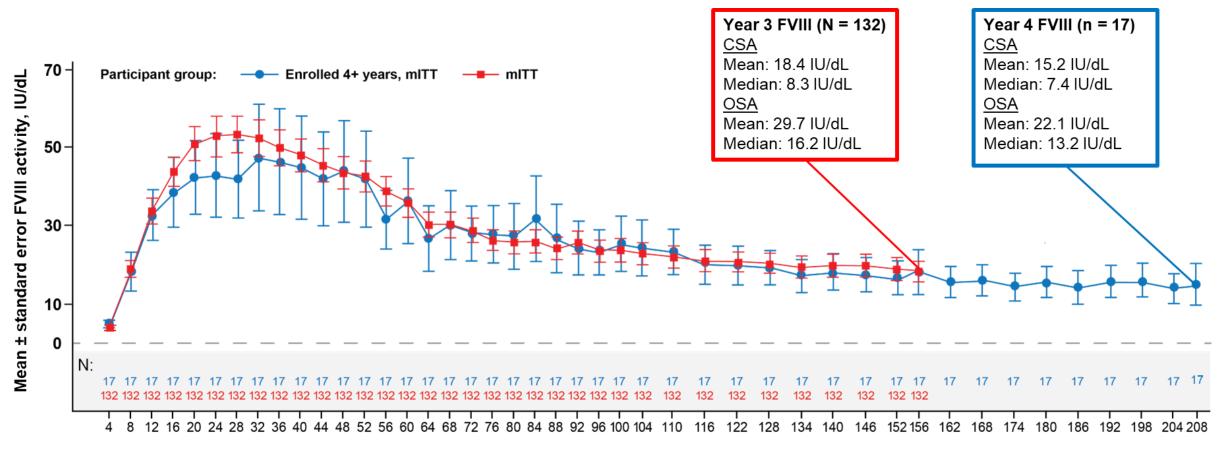
- No new safety signals
- Most common AE remains ALT elevation (25%)
 - Others included COVID-19 (22%), arthralgia (13%), headache (7%), pyrexia (6%), and upper respiratory tract infection (6%)
- No new treatment-related Grade 3 AEs occurred
- No treatment-related SAEs
- No participants developed inhibitors or thromboembolic events

Participants, n (ITT N = 134	
AEs	103 (76.9)	
SAEs	11 (8.2)	
Treatment-relate	16 (11.9)	
Corticosteroid-related AEs		0
AEs of special interest	ALT elevation	34 (25.4)
	ALT elevation \geq Grade 3	0
	Potential Hy's law case	0
	Infusion-related reactions ^a	0
	Systemic hypersensitivity	0
	Anaphylactic or anaphylactoid reactions	0
	Thromboembolic events	0
	Anti-FVIII neutralizing antibodies	0
	Malignancy (except non-melanoma skin cancer)	1 (0.7)

7 AE, adverse event; ALT, alanine aminotransferase; FVIII, factor VIII; ITT, intent-to-treat; SAE, serious AE.

One SAE in the past year: B-cell acute lymphoblastic leukemia not linked to valoctocogene roxaparvovec

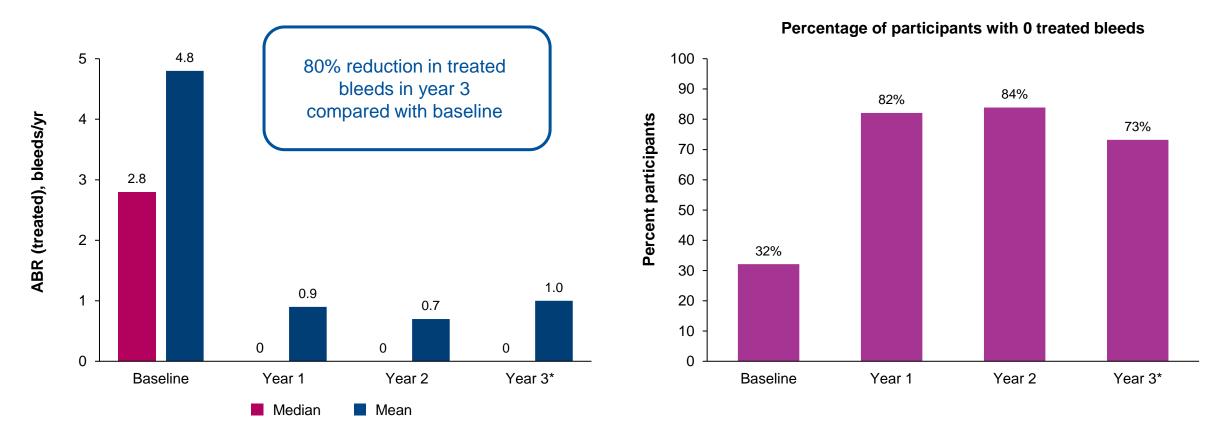
- Participant dosed almost 3 years ago with 6x10¹³ vg/kg valoctocogene roxaparvovec
- B-ALL diagnosed by bone marrow biopsy
- Genetic testing and whole genome sequencing were performed on leukemic and healthy blood cells
 - A known driver mutation for acute lymphoblastic leukemia was detected in 85% of bone marrow cells via standard of care genetic workup done at the clinical site and sequence data from a subsequent focused tumor gene panel
 - Assessment of valoctocogene roxaparvovec vector DNA demonstrated extremely low levels in 5 cell populations that underwent genomic analysis, with the lowest levels in tumor-containing samples
 - No vector-host integration sites were identified in the analysis of whole genome sequencing for all samples
- Based on these analyses, it is very unlikely that valoctocogene roxaparvovec played a role in the development of B-ALL in this study participant


ALT elevation and corticosteroid use

- In the past year of follow-up, 34 (25%) participants had an ALT elevation
 - None initiated corticosteroids after week 104
 - Most events were Grade 1 and less than the ULN
- As of the data cutoff date, 3 participants were using corticosteroids for any indication

Through all follow-up	ITT N = 134
Used corticosteroids for any purpose, n (%)	109 (81.3)
Total duration, weeks, median (min, max)	33 (0.1, 120)
Total dose, mg, median (min, max)	6310 (40, 31760)
Used corticosteroids for ALT elevation, n (%)	106 (79.1)
Total duration, weeks, median (min, max)	33 (3, 120)
Total dose, mg, median (min, max)	6420 (960, 31760)

FVIII activity per chromogenic substrate assay up to 4 years

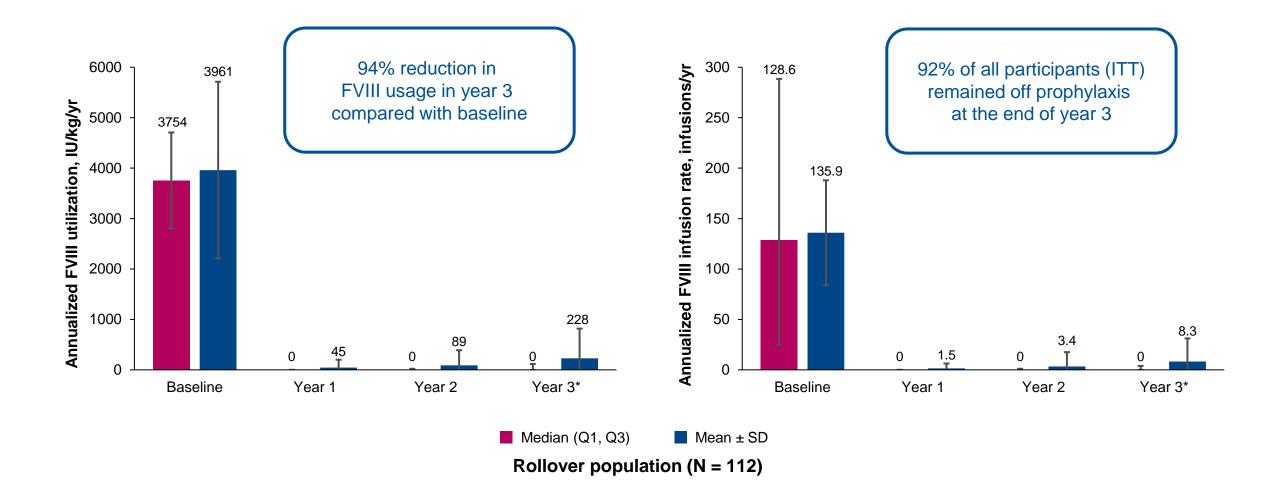

Study weeks

BOMARIN

For participants who discontinued the study, missing FVIII values post-discontinuation were imputed to be 0 IU/dL through the data cutoff date for the analysis.

o CSA, chromogenic substrate assay; FVIII, factor VIII; mITT, modified intent-to-treat; OSA, one-stage assay.

Reduction in treated bleeds maintained over 3 years

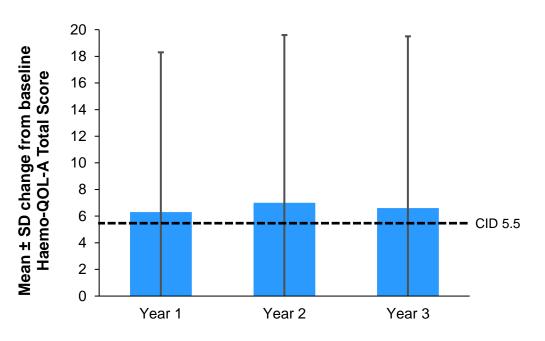

Rollover population (N = 112)

Missing data were not imputed. *Year 3 data were based on N = 110 due to participants who discontinued from the study.

11 ABR, annualized bleeding rate.

Reduction in FVIII utilization maintained over 3 years

Missing data were not imputed. *Year 3 data were based on N = 110 due to participants who discontinued from the study.


12 FVIII, factor VIII; ITT, intent-to-treat population; Q, quartile; SD, standard deviation.

Improvement in Haemo-QOL-A maintained at the end of year 3

 Change in mean Haemo-QOL-A Total Score from baseline to week 156 was 6.6 (*P* < 0.0001)

This exceeds the anchor-based CID of 5.5¹

Efficacy evaluation period	N	Haemo-QOL-A Total Score (mean ± SD)	Change from baseline* (mean ± SD)	<i>P</i> -value (change from baseline*)
Baseline	130	75.7 ± 16.7	-	-
Year 1	129	82.1 ± 15.4	6.3 ± 12.0	<i>P</i> <0.0001
Year 2	128	82.8 ± 15.3	7.0 ± 12.5	<i>P</i> <0.0001
Year 3	123	82.3 ± 14.5	6.6 ± 12.9	<i>P</i> <0.0001

mITT population (N = 132)*

1. Quinn J et al. Patient Relat Outcome Meas. 2022;13:169-80.

*Haemo-QOL-A Total Score change from baseline results are based on available data at each time point, which may differ from the given N.

13 CID, clinically important difference; Haemo-QOL-A, Haemophilia-specific Quality of Life Questionnaire for Adults; mITT, modified intent-to-treat; SD, standard deviation.

Conclusions

- No new safety signals emerged during year 3
 - Safety profile remains unchanged
- Previously observed trends regarding change in FVIII activity were maintained
- A single infusion of valoctocogene roxaparvovec provided robust hemostatic efficacy relative to FVIII prophylaxis over 3 years
 - 80% reduction in treated bleeds in year 3 compared with baseline
 - 94% reduction in FVIII usage in year 3 compared with baseline
 - 92% of participants remained off prophylaxis at the end of year 3
- Improvements in QOL were maintained at the end of year 3

Acknowledgments

Thank you to all the trial participants, their families, study-site personnel, and investigators

• Funding for this study was provided by BioMarin Pharmaceutical Inc.

• Medical writing and editorial support were provided by Kathleen Pieper, PhD, of AlphaBioCom and funded by BioMarin Pharmaceutical Inc.

