

Stable Factor VIII Expression and Improvement in Bleeding Phenotype Following Early Childhood Treatment with Adeno-Associated Viral Gene Therapy in the Severe Hemophilia A Dog Model

<u>P. Batty</u>, A. Menard, A. Mo, Brown C., A.M. Ismail, B. Yates, L. Harpell A. Pender, A. Winterborn, S. Fong, D. Lillicrap

Hemophilia Gene Therapy Basic Science : OC 30.2 Monday, June 26, 2023

Disclosures for Paul Batty

Scientific Advisory Board	BioMarin, Novo Nordisk & CSL Behring
Speakers Bureau	No relevant conflicts of interest to declare
Research Support	BioMarin
Employee	No relevant conflicts of interest to declare
Consultant	No relevant conflicts of interest to declare
Investments / Major Stockholder	No relevant conflicts of interest to declare
Honoraria	Octapharma, BioMarin, Pfizer, Novo Nordisk Institute for Nursing and Medication Education (IMNE)
Other	European Haemophilia Consortium Volunteer

Learning Objectives

Upon Completion, participants will be able to :

- 1) Describe <u>changes in liver volume and weight during early life</u> in the hemophilia dog model
- 2) List <u>laboratory tests used to evaluate outcomes</u> of AAV-cFVIII gene therapy in the hemophilia dog model
- 3) Describe the <u>differences in FVIII expression</u> following AAV-cFVIII in hemophilia dogs treated at either 2-weeks or 2-months (human ~ 9 months) of age

Gene Therapy for Hemophilia

Hemophilia Gene Therapy

- Clinically relevant expression
 - Hemophilia A : 6 years ¹
 - Hemophilia B : > 8 years ²
- ↓ Bleeding & Factor concentrate
- All participants \geq 18 years

Pediatric Gene Therapy Considerations

- <u>Benefits</u>: ↓ Bleeding & joint disease
- Concerns: Loss of expression & safety

Canine Hemophilia A

- Similar Genotype
 - Intron-22 inversion like F8 mutation 1
- Similar Clinical Phenotype
 - Spontaneous bleeding events
 - Treated with recombinant canine FVIII
 - Inhibitor-prone c. 25% incidence
- Long-term follow-up >10 years ²

Study Aims

- Evaluate <u>efficacy & safety</u> of AAV5-cFVIII during early life (neonatal and infancy)
- Evaluate whether <u>FVIII expression</u> reduces as the liver grows in the 1st year of life

B-domain deleted canine F8 (codon optimized)

ITR = Inverted terminal repeat. HLP = Hybrid liver promoter PA = Polyadenylation sequence

Study Outline

Dose: 2e14 vg/kg (Based on RAG2/FVIII DKO murine studies)¹

(1) Zhang L et al. Mol Ther Methods Clin Dev. 2022; 26:519-531 (2) Wang T et al. Cell Syst. 2020;11(2):176-185

Cohort 1 : Neonatal AAV5-cFVII Treated Hemophilia Dogs

ID	Treatment age (weeks)	Treatment weight (kg)	Sex	Construct	Dose (vg/kg)	Follow-Up* (Weeks)
UN021	2.4	1.0	F	HLP-co-SQ-cFVIII	2.0e14	93.1
BRI21	2.3	1.2	F	HLP-co-SQ-cFVIII	2.0e14	75.3

*Data cut-off: 26/5/23

Cohort 1 : Neonatal AAV5-cFVII Treated Hemophilia Dogs

ID	Treatment age (weeks)	Treatment weight (kg)	Sex	Construct	Dose (vg/kg)	Follow-Up* (Weeks)
UN021	2.4	1.0	F	HLP-co-SQ-cFVIII	2.0e14	93.1
BRI21	2.3	1.2	F	HLP-co-SQ-cFVIII	2.0e14	75.3

Cohort 1 : Neonatal AAV5-cFVII Treated Hemophilia Dogs

ID	Treatment age (weeks)	Treatment weight (kg)	Sex	Construct	Dose (vg/kg)	Follow-Up* (Weeks)
UN021	2.4	1.0	F	HLP-co-SQ-cFVIII	2.0e14	93.1
BRI21	2.3	1.2	F	HLP-co-SQ-cFVIII	2.0e14	75.3

Minimal FVIII Expression Seen in AAV5-cFVII Treated Neonatal Dogs

- Untreated adult hemophilia A dog Whole Blood Clot Time (WBCT): 13.9 mins (9.6 17.7)
- Improvement in WBCT despite minimal FVIII expression
 - Similar findings seen in adult non-responders in our previous study¹

1) Batty P et al. Blood. 2022; 140(25): 2672-2683

Cohort 2 : Infant AAV5-cFVII Treated Hemophilia Dogs

ID	Treatment age (weeks)	Treatment weight (kg)	Sex	Construct	Dose (vg/kg)	Follow-Up (Weeks)*
BUX21	9.3	4.9	М	HLP-co-SQ-cFVIII	2.0e14	68.4
CAM21	9.3	4.1	F	HLP-co-SQ-cFVIII	2.0e14	68.4
RYE21	9.3	4.0	F	HLP-co-SQ-cFVIII	2.0e14	68.4

*Data cut-off: 26/5/23

Post- AAV	Body weight increase (kg)	Body weight increase (fold)
3 Months	6.6 kg	2.7-fold
12 Months	7.7 kg	2.9-fold

Cohort 2 : Infant AAV5-cFVII Treated Hemophilia Dogs

ID	Treatment age (weeks)	Treatment weight (kg)	Sex	Construct	Dose (vg/kg)	Follow-Up (Weeks)*
BUX21	9.3	4.9	М	HLP-co-SQ-cFVIII	2.0e14	68.4
CAM21	9.3	4.1	F	HLP-co-SQ-cFVIII	2.0e14	68.4
RYE21	9.3	4.0	F	HLP-co-SQ-cFVIII	2.0e14	68.4

450₁

Post-	Liver volume fold	Body weight fold	400- 350- - - - - - - -
3 Month	2.5-fold	2.7-fold	Ξ 300- Ξ 250- Ο 200- Ξ
12 Month	3.9-fold	2.9-fold	± 150- 100- 50- → BUX21 → CAM21
			-10 0 10 20 30 40 50 6 Weeks (post)

Sustained FVIII Expression Seen in AAV5-cFVII Treated Infant Dogs

- Cohort 1 : Neonatal
- UNO21
- BRI21

Cohort 2 : Infant

- BUX21
- CAM21
- 🔸 RYE21

Reduction in Bleeding Events Following Infant or Neonatal AAV-cFVIII

Pre-AAV (Events = 4)

- BUX21 (n=1) Limb S (rFVIII)
- CAM21 (n=2) Limb S (TXA) & Scalp T (TXA)
- RYE21 (n=1) Scalp S (TXA)

Post-AAV (Events = 3)

- BRI21 (n=2) : Limb S (rFVIII) & Limb S (TXA)
- BUX21 (n=1): Soft tissue T (TXA) Day + 2

Summary

- Significant increase in liver volume & body weight seen in 1st year of life
- AAV5-cFVIII resulted in therapeutic FVIII expression into adulthood in infant treated severe hemophilia A dogs
- Improvement in WBCT & bleeding phenotype seen in both cohorts
- Percutaneous liver biopsies performed with no complications
- Analysis of AAV VG and molecular forms (episomal/integrated) ongoing

Acknowledgments

- Haemophilia colony dogs
- Queen's University
 - David Lillicrap
 - Alex Menard
 - Christine Brown
 - Lori Harpell
 - Aomei Mo
 - Abbey Pender
 - Andrew Winterborn
- BioMarin
 - Sylvia Fong
 - Mohamed Ismail Ashrafali
 - Bridget Yates

pab7@queensu.ca

@paul_batty1