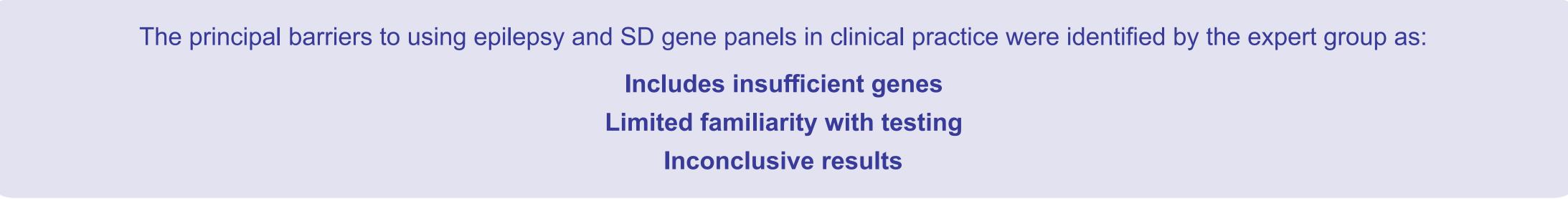
Gene panels for skeletal dysplasia and epilepsy: Maximizing clinical utility through careful design, regular review, and clinician-laboratory collaboration


Ahmad Abou Tayoun¹, Swaroop Aradhya², Mitch Bailey³, Laila Bastaki⁴, Sara Došenović³, Fatih Ezgü⁵, Emanuela Izzo³, Christina Lampe⁶, James J O'Byrne⁷, Guillermo Seratti³, Catherine Snow⁸, Christian Staufner⁹, Pasquale Striano^{10,11}

¹Al Jalila Children's Speciality Hospital / Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; ²Invitae Corporation, San Francisco, California, USA; ³BioMarin Pharmaceutical Inc., Novato, California, USA; ⁴Kuwait Medical Genetics Center, Kuwait; ⁵Gazi University, Ankara, Turkey; ⁶Zentrum für seltene Erkrankungen Gießen, Giessen, Germany; ⁷National Center for Inherited Metabolic Disorders, Mater Misericordiae University Hospital, Dublin, Ireland; ⁸Genomics England, London, United Kingdom; ⁹Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany; ¹⁰IRCCS Istituto Giannina Gaslini, Genoa, Italy; ¹¹Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy

Background

- Advances in sequencing technology have made gene panels more accessible, flexible, comprehensive, and efficient
- Lack of gene panel standardization represents a barrier to timely and accurate diagnosis of rare conditions with treatment or other management options available
- In 2019-2020, the ACMG published a Technical Standard for diagnostic gene panel design,¹ however, there remains a lack of standardization of genes included on panels offered by clinical laboratories
- The ACMG Technical Standard provides a framework, but relies on individuals to interpret and apply to specific phenotypes and does not provide guidance on follow-up recommendations
- Comprehensive symptom- or disease-directed gene panels for epilepsy and skeletal dysplasia/disorder (SD) offer a high-throughput testing option that can reduce the diagnostic burden associated with rare, heterogenous disorders with overlapping and non-specific symptoms (e.g., lysosomal storage disorders, or LSDs)

Results

Practical Considerations to ACMG Technical Standard for Epilepsy and Skeletal Dysplasia

- To acknowledge the evolving nature of clinical genetics and need for durable guidance, we focused on a process (Figure 3) versus a static list of genes
- Given availability of approved treatments and confirmatory testing methods (e.g., enzyme testing), we recommend that metabolic conditions and treatable conditions are included on gene panels for epilepsy and/or SD
- In addition to the considerations presented here, partnership with external bodies (e.g., MetabERN in EU for inborn errors of metabolism, ILAE for epilepsy) could amplify efforts to standardize, and increase clinician familiarity with, gene panels for epilepsy and SD

- The lack of standardization of epilepsy and SD panels can be seen through comparing commercially-available panels marketed for these conditions:
- When looking at all genes included in panels from 4 major labs in the US/ Europe, over half of genes are included at only one lab (Figure 1); rare/ treatable conditions, including LSDs, are frequently excluded from panels

Figure 1. Epilepsy and Skeletal Dysplasia/Disorder Panels are heterogeneous and frequently exclude rare/treatable conditions

Epilepsy Panels				Skeletal Dysplasia/Disorder Panels			
Lab A	Lab B	Lab C	Lab D	Lab A	Lab B	Lab C	Lab D
300-350	100-150	>500	>500	350-400	25-50	100-150	25-50
genes	genes	genes	genes	genes	genes	genes	genes
948 unique genes				361 unique genes			
included on ≥1 panel				included on ≥1 panel			
475 (50%) genes on only 1 panel e.g., <i>IDS, IDUA</i>		361 genes (38%) on 2-3 panels e.g., <i>NPC1</i>	112 genes (12%) on all panels	243 genes (67%) on only 1 panel e.g., <i>ARSB, GALNS, GLB1</i>		101 genes on 2-3 p e.g., <i>Ph</i>	anels (5%)

Public tools have been introduced to facilitate selecting genes to include on phenotype-directed gene panels

- Comparing two of these tools, ClinGen² and PanelApp³, with genes included on any of the 4 panels from **Figure 1**, further demonstrates the lack of standardization of panels and associated resources for epilepsy and SD

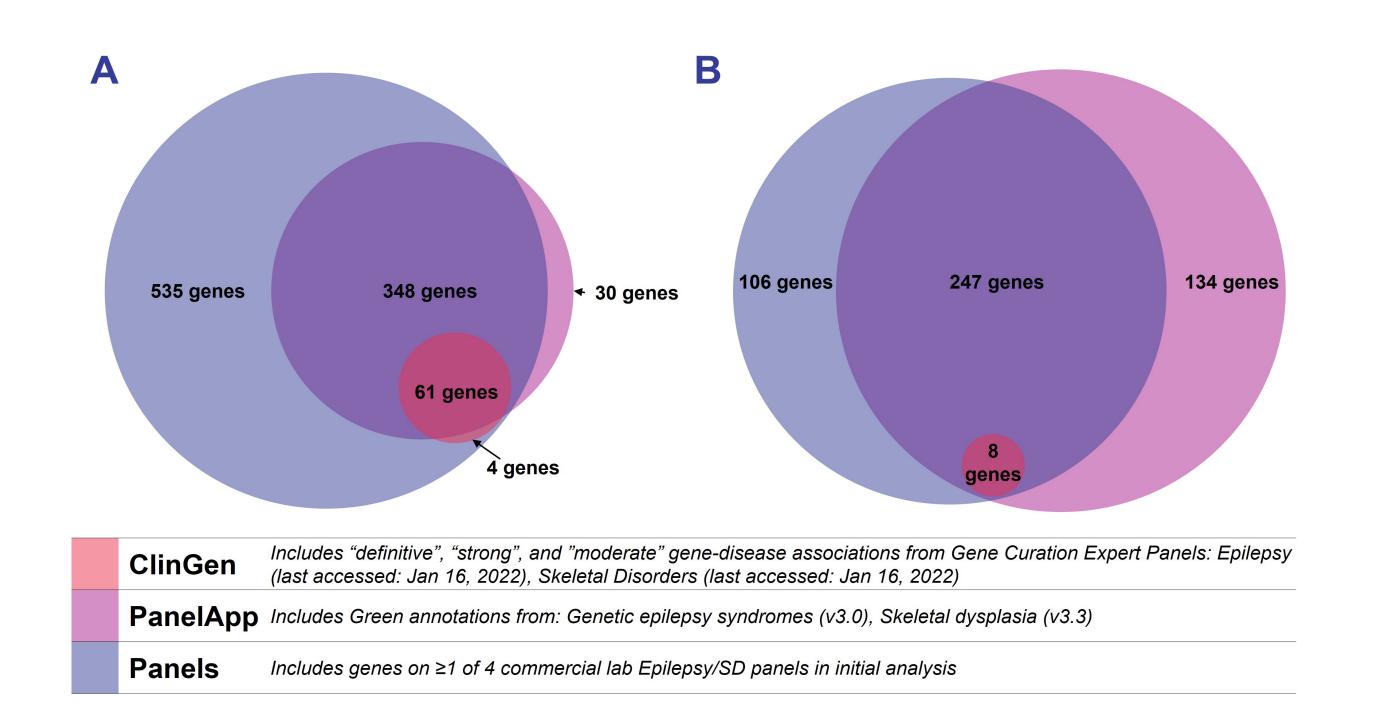

• The considerations presented here are intended to be a condition-specific supplement to, not a replacement for, the core the ACMG Technical Standard¹

Figure 3. Epilepsy/SD-specific considerations mapped to ACMG Technical Standard

Summary of process described n ACMG Technical Standard	Practical Consideration	Resources	Epilepsy/SD Examples
Define intended use of gene panel	 Consider all GAD and GADDx spanning both <i>common</i> and <i>rare</i> causes of the disorder to maximize clinical utility (yield) Alternatively, use a tiered approach in which an extended panel is used to expand the list of genes tested if the core panel does not yield satisfactory findings 	 ClinGen² PanelApp³ HGMD⁴ ClinVar⁵ Literature 	Literature: Nosology of Skeletal Dysplasia ⁶
<section-header></section-header>	 Consider clinical heterogeneity through collaboration with lab and clinician peers; for example, consider: Spectrum of diseases (consider classical and atypical phenotypes) Phenotype at presentation (early diagnosis) 	 Peer-to-peer collaboration (clinician and lab collaboration) 	 Consider differential diagnoses at patient presentation: Epilepsy: CLN2 disease (<i>TPP1</i> gene) typically presents with unprovoked seizures before progressing to a syndromic presentation Consider the spectrum of phenotypes for each gene: SD: Morquio A syndrome (<i>GALNS</i> gene) has classical and nonclassical presentations with variable clinical symptoms and age at presentation
<section-header></section-header>	3 Consider impact on clinical management including availability of targeted therapies, pharmacogenomics, and interventional clinical trials	 ClinGen Expert Working Groups² Regulatory agencies, e.g., FDALabel⁷, EMA⁸, ClinicalTrials⁹, EudraCT¹⁰ PharmGKB¹¹ Literature 	 Example genes with clinical implications: Epilepsy: ALDH7A1^a, CHD2^b, PCDH19^b, SCN1A^b, SLC2A1^a, TPP1^c, TSC1/2^{b,c} SD: ALPL^c, ARSB^c, COL1A1^{b,c}, COL1A2^{b,c}, FGFR3^{b,c}, GALNS^c, IDS^c, IDUA^c, PHEX^c
Reporting	 Consider reflex testing with orthogonal methods (e.g., enzyme activity) or providing information on follow-up testing to facilitate follow-up of inconclusive results Including genes for conditions with non-sequencing confirmatory test available can increase clinical utility while reducing burden of inconclusive results (e.g., VUS) 	 Genetic Test Registry¹² Orphanet¹³ Local Labs Literature 	Epilepsy examples: <i>PPT1</i> ^d , <i>TPP1</i> ^d SD examples: <i>ARSB</i> ^d , <i>GALNS</i> ^d , <i>GLB1</i> ^d , <i>IDS</i> ^d , <i>IDUA</i> ^d , <i>SGSH</i> ^d

(Figure 2)

Figure 2. Comparison of ClinGen, PanelApp, and (A) Epilepsy and (B) Skeletal Dysplasia/Disorder Panels demonstrates lack of standardization

Objective

To develop practical considerations for the design of gene panels for epilepsy and SD including phenotype/gene-specific guidance on gene selection, reflex Please refer to Bean et al., 2019¹ for general recommendations within each step above

GAD, gene associated with Mendelian disorder; GADDx, gene associated with differential diagnosis; VUS, variant of uncertain significance

^anon-pharmacological therapy impacting disease course available (e.g., ketogenic diet); ^bclinical trial(s) available; ^ctherapy approved in US, Europe, and/or other region(s); ^dbiochemical genetic (enzyme) testing

Conclusions

• Gene panels for epilepsy and SD should include genes for both common and rare genetic conditions (e.g., lysosomal storage diseases) and be regularly reviewed to ensure completeness and continued appropriateness of genes included

testing, and reporting

Expert opinion was developed through multiple surveys, and subsequent discussions with a group of molecular genetic laboratory and clinician specialists (N=10) from the US, Europe, the Middle East, Turkey, and Brazil to capture both laboratory and clinical as well as regional perspectives/differences

• Where available, orthogonal confirmatory testing methods should be leveraged to increase clinical utility by clarifying inconclusive results (e.g., VUS) and shortening the diagnostic odyssey

• Collaboration and knowledge sharing among/between laboratories and clinicians is recommended to facilitate panel design, results interpretation, and follow-up testing

Partnership with global/regional external bodies could amplify efforts to standardize gene panels for epilepsy and SD

References

1. Bean LJ, Funke B, Carlston CM, et al. Genetics in Medicine. 2020;22:453-61 2. Rehm HL, Berg JS, Brooks LD, et al. N Engl J Med. 2015;372:2235-42 3. Martin AR, Williams E, Foulger RE, et al. Nat Gen. 2019;51:1560-5 4. Stenson PD, Ball EV, Mort M, et al. Hum Mutat. 2003;21:577-581 5. Landrum MJ, Lee JM, Benson M, et al. Nucleic Acids Res. 2018;46:D1062-D1067 6. Mortier GR, Cohn DH, Cormier-Daire V, et al. Am J Med Genet A. 2019;179:2393-2419 7. https://nctr-crs.fda.gov/fdalabel/ui/search 8. https://www.ema.europa.eu/en/medicines 9. https://clinicaltrials.gov/ 10. https://eudract.ema.europa.eu/ 11. https://www.pharmgkb.org/ 12. https://www.ncbi.nlm.nih.gov/gtr/ **13**. https://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search.php

