Disclosure – conflict of interest

- ✓ I have the following potential conflict(s) of interest to report
- Name of commercial company: BioMarin Pharmaceutical Inc.
- Stock shareholder: BioMarin Pharmaceutical In.

Building Bridges in Coagulation

GTH 2024

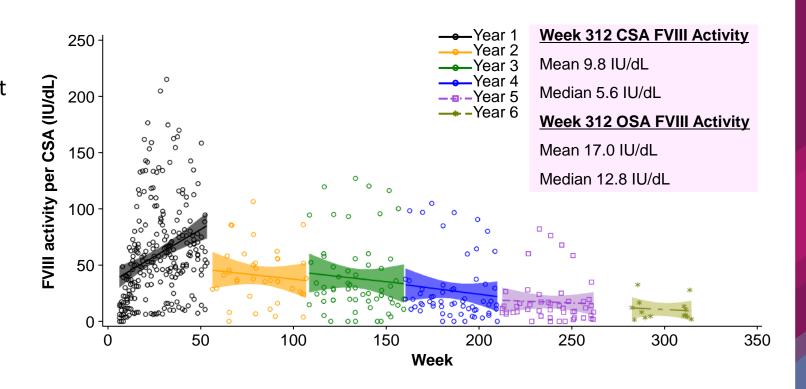
68th Annual Meeting of the Society of Thrombosis and Haemostasis Research

Presenter: Simon Harris

Bridget Yates, Dafna J. Groeneveld, Stephen Scheeler, Britta Handyside,

Isaac Villalpando, Suresh Agarwal, Stuart Bunting, Sylvia Fong

Disclosures


• All are employees and shareholders of BioMarin Pharmaceutical Inc.

AAV gene therapy for haemophilia A

- Efficacy
 - Haemostatic benefit relative to FVIII prophylaxis
 - Quality of life
- Safety profile
- Variability
 - Intra & inter-study
- Durability

58th Annual Meeting of the Society of Thrombosis and Haemostasis Research

Decline/variability in expression observed AAV-FVIII trials

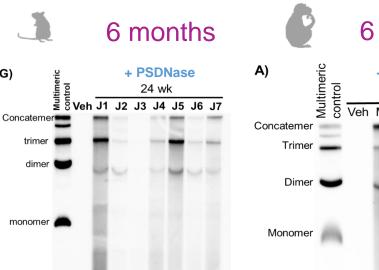
- Understanding the mechanism leading loss of expression and variable response is needed to identify intervening strategies
 - Loss of expression maybe related to decrease AAV episome transcription
 - Variable response maybe related to individuals' abilities to fold and secrete FVIII proteins

Goal

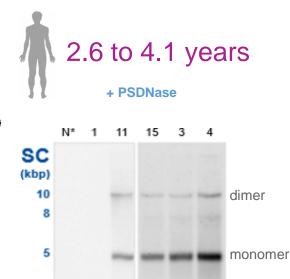
- Strategies to maximize durability will provide patients longer benefit following gene therapy administration
 - Reverse decline of transgene expression
 - Increase FVIII secretion

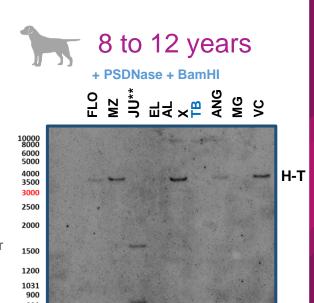
Decline of FVIII expression

Actionable strategy to reverse decline



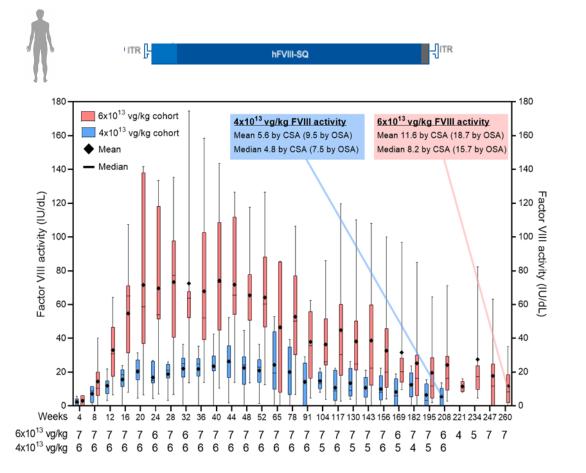

58th Annual Meeting of the Society of Thrombosis and Haemostasis Research

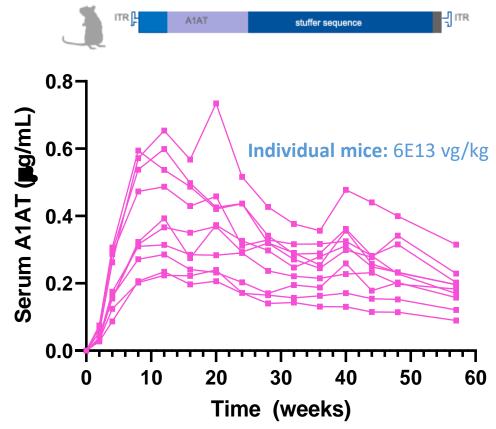

WIEN 27 Feb-1 Mar



Stable episomes persist following AAV-FVIII GT

TB: Haemophilia A dog untreated control




68th Annual Meeting of the Society of Thrombosis and Haemostasis Research

Expression profiles in mice are similar to humans

68th Annual Meeting of the Society of Thrombosis and Haemostasis Research

WIEN 27 Feb-1 Mar

Multiple lines of evidence suggest low RNA production contributes to the decline of FVIII expression or low response to AAV-GT

Longitudinal Murine Study: Decreased interaction of active histones with episomal genomes may mediate the decline in transgene expression over time (Handyside *et al. Mol Ther* 2022)

Drug-induced suppression of FVIII expression following Accutane treatment was observed in clinic. In vitro studies showed Accutane decreased RNA transcript levels without affecting AAV vector genomes (Liu *et al. MTCMD.* 2022)

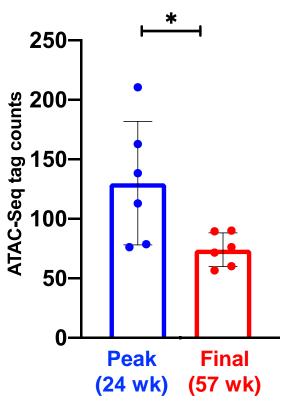

Human Biopsy Analysis: In one non-responder, hepatocytes expressed little RNA despite similar levels of vector genome (Fong et al. Nat Med. 2022)

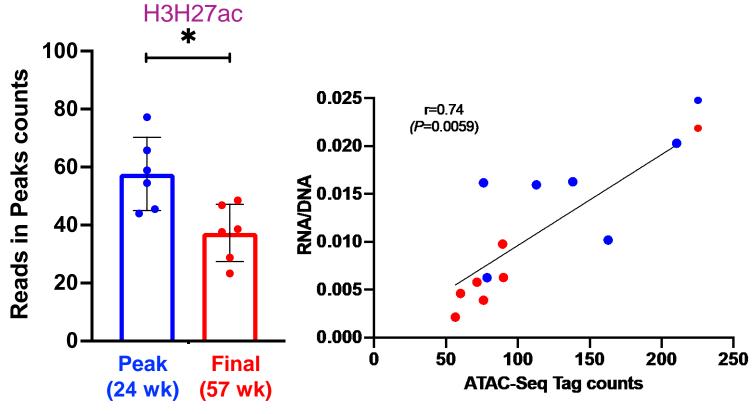
Fong et al., Interindividual variability in transgene mRNA and protein production following adeno-associated virus gene therapy for

mediate decline in transgene expression of AAV5 vectors produced in mammalian and insect cells; Mol Ther. 2022; 30: 3570-3586

hemophilia A. Nat Med. 2022; 28: 789-797; Liu et al. Application of in-vitro-cultured primary hepatocytes to evaluate species translatability

and AAV transduction mechanisms of action. MTCMD. 2022; 26:61-71; Handyside et al., Vector genome loss and epigenetic modifications





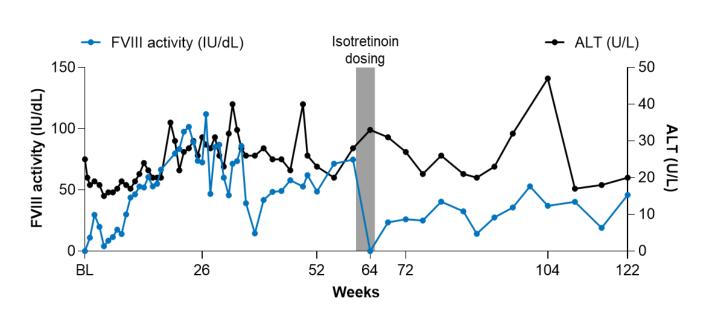
Genome accessibility may mediate decline in RNA expression in mice

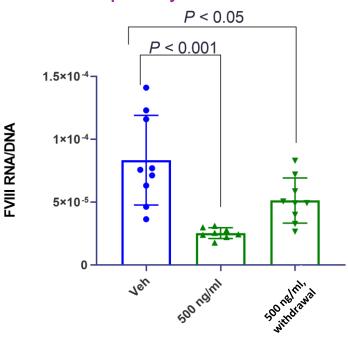
Vector genome accessibility Interaction with active Histone

^{*} Measured by ATAC-Seq

28.02.202

^{*} Measured by CHIP-Seq

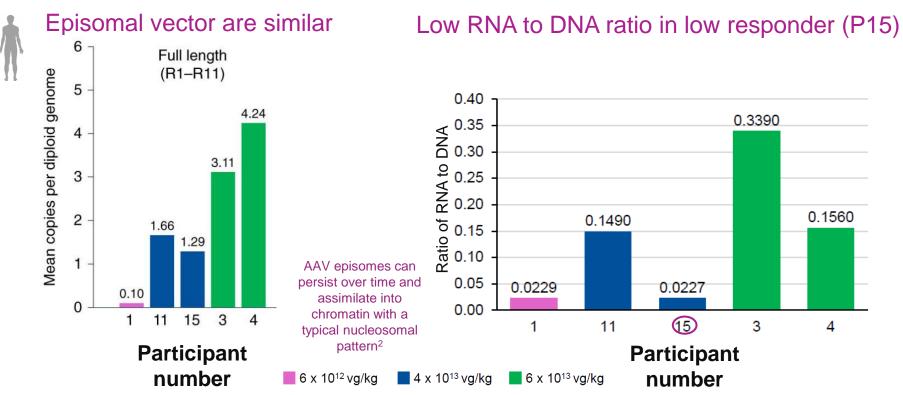

Handyside et al., Vector genome loss and epigenetic modifications mediate decline in transgene expression of AAV5 vectors produced in mammalian and insect cells. Mol Ther. 2022; 30: 3570-3586


Transcriptional regulation contributes to decline in expression in human

FVIII plasma levels decline following Accutane Rx in clinical trial participant who received 6e13 vg/kg of AAV5-hFVIII-SQ (valoctocogene roxaparvovec)

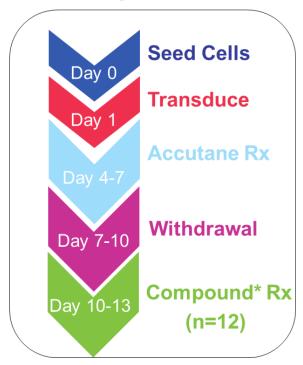
Effect of Accutane* on AAV5-hFVIII-SQ (valoctocogene roxaparvovec) occurs at the RNA level in primary human hepatocytes

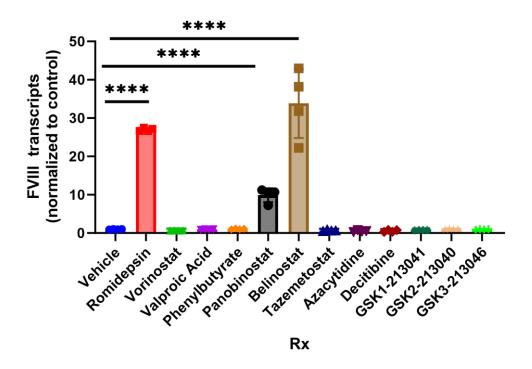
*Accutane did not induce hepatoxicity; had no effect on vector genome levels



58th Annual Meeting of the Society of Thrombosis and Haemostasis Research

Human Biopsy Analysis: In one nonresponder, hepatocytes expressed little RNA despite similar levels of vector genome

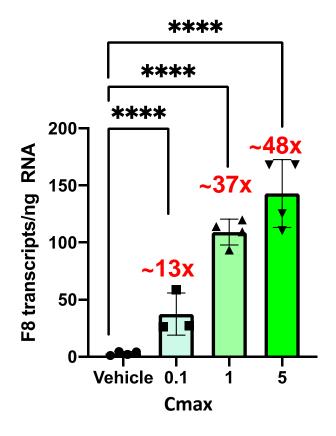



HDACi reverses drug-induced ROCTAVIAN silencing in vitro

Hypothesis: Modifying the chromatin interaction with AAV-episomes using epigenetic modulators may increase accessibility of vector genomes potentially reactivating vector genome expression

Screening for Reactivation

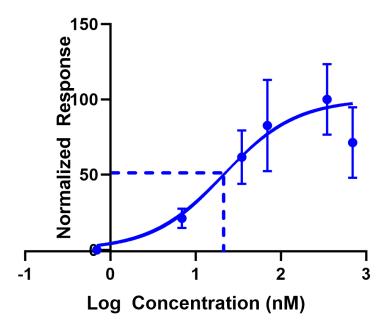
Epigenetic Modifier Screen



58th Annual Meeting of the Society of Thrombosis and Haemostasis Research

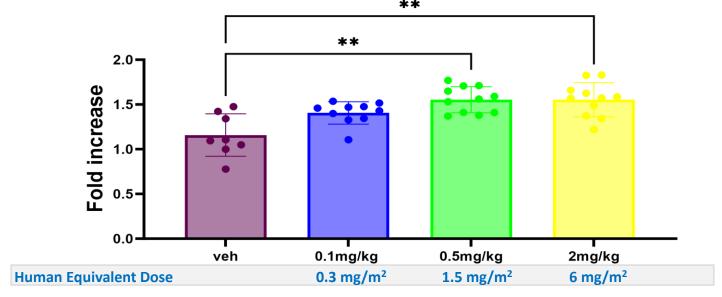
HDACi reverses drug-induced ROCTAVIAN silencing in vitro

- At all doses tested, no toxicity was observed in human primary hepatocytes
- Romidepsin increased transgene expression without drug-induced silencing, though to a lesser degree


377 ng/mL= 1x Cmax

Modeling of HDACi Doses Needed to Reactivate Expression

- Modeling performed to predict exposures needed for a 3-fold increase in expression in invivo experiments using:
 - human and preclinical PK data (literature)
 - in vitro primary human hepatocyte data (in-house)


Reactivation: <20% of clinical dose

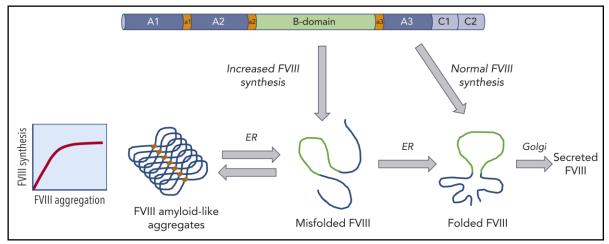
Pilot mouse study indicated Romidepsin can increase AAV expression

Potentiation model: Romidepsin treatment 4-weeks following in C57Bl/6 mice

- A single dose of HDACi moderately increased A1AT levels at doses ≤ 2 mg/kg (~40% of clinical dose)
 - No signs of liver toxicity measured by ALT and histopathology
 - No signs of myelosuppression (normal CBC and clinical chemistry)
- Mouse studies underway to evaluate potential reactivation of AAV5 following transgene expression decline

Variability of FVIII expression

Actionable strategy to improve FVIII secretion


58th Annual Meeting of the Society of Thrombosis and Haemostasis Research

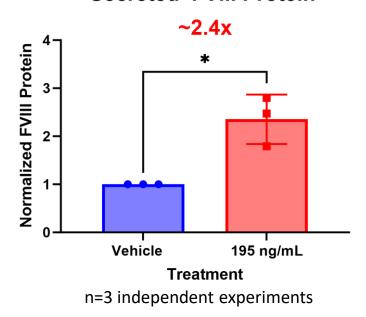
WIEN 27 Feb-1 Mar

Evaluating actionable strategies to increase FVIII secretion

Increased BDD-FVIII synthesis can lead to misfolding and aggregation

Denise E. Sabatino, Clogging up the pipeline: factor VIII aggregates, Blood, 2020

- B-domain deleted FVIII-SQ protein is inefficiently folded and secreted from the ER¹
- Studies have demonstrated reducing ER stress with antioxidants can increase FVIII secretion both in vivo and in vitro²
- Cells have a capacity to fold and secrete FVIII-SQ protein and the individual capacity could lead to inter-individual variability of response³



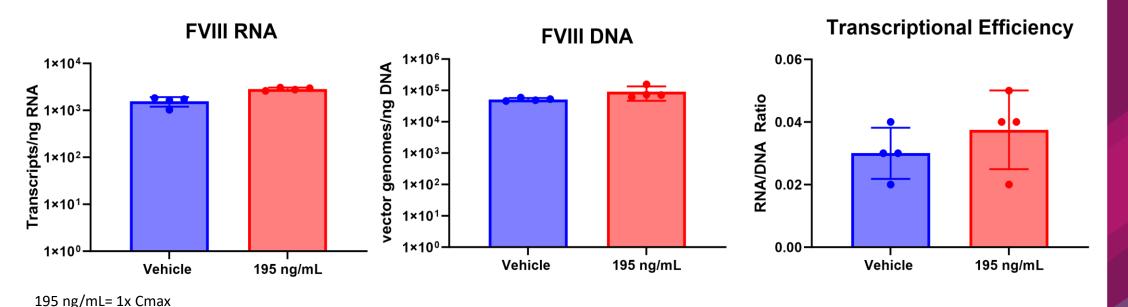
Phenylbutyrate significantly increases BDD-FVIII protein secretion

Secreted FVIII Protein

195 ng/mL = 1x Cmax

Sodium phenylbutyrate (4-PBA)

- Small molecular chaperone
- Reduces UPR/ER stress¹
- Approved in EU and US



12 compounds were screened in HepG2 cells transduced with AAV5-hFVIII-SQ

Phenylbutyrate has no effect on transgene transcriptional efficiency

Sodium phenylbutyrate had no effect on transgene expression in primary human hepatocytes

Basseri, Sana et al. "The chemical chaperone 4-phenylbutyrate inhibits adipogenesis by modulating the unfolded protein response." Journal of lipid research vol. 50,12 (2009): 2486-501. Xiao, Changting et al. "Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans." Diabetes vol. 60,3 (2011): 918-24. Yam, Gary Hin-Fai et al. "Sodium 4-phenylbutyrate acts as a chemical chaperone on misfolded myocilin to rescue cells from endoplasmic reticulum stress and apoptosis." Investigative ophthalmology & visual science vol. 48,4 (2007): 1683-90.

Key summaries

- Two actionable strategies were identified to potentially improve patient outcomes following AAV5-hFVIII-SQ treatment
 - Epigenetic modulators (HDACi) show potential for reactivating AAV transgene expression both in vitro and in vivo at low doses
 - The use of chemical chaperones may improve FVIII-SQ secretion
- Additional mouse studies are underway to evaluate if:
 - Romidepsin can reactivate transgene expression following decline with low and infrequent dosing regimen, and
 - Sodium phenylbutyrate can increase FVIII secretion in vivo

Acknowledgements

• This study was funded by BioMarin Pharmaceutical Inc.

