Safety and efficacy of valoctocogene roxaparvovec gene transfer for severe hemophilia A: an update from 4 years after treatment

Andrew D Leavitt¹, Johnny Mahlangu², Emily Symington³, **Doris V Quon**⁴, Adam Giermasz⁵, Nigel S Key⁶, Steven W Pipe⁷, Bella Madan⁸, Sheng-Chieh Chou⁹, Robert Klamroth^{10,11}, Jane Mason¹², Flora Peyvandi^{13,14}, Hua Yu¹⁵, Tara M Robinson¹⁵, Margareth C Ozelo¹⁶

Thrombosis & Hemostasis Summit of North America 2024

BOMARIN

¹Adult Hemophilia Treatment Center, University of California San Francisco, San Francisco, CA, USA; ²Hemophilia Comprehensive Care Center, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand and NHLS, Johannesburg, South Africa; ³Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; ⁴Orthopaedic Hemophilia Treatment Center, Los Angeles, CA, USA; ⁵Hemophilia Treatment Center, University of California Davis, Sacramento, CA, USA; ⁶UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, USA; ⁷Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI, USA; 8Guy's and St Thomas' NHS Foundation Trust, London, UK; 9Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; ¹⁰Vascular Medicine and Haemostaseology, Vivantes Klinikum im Friedrichshain, Berlin, Germany; ¹¹Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany; ¹²Queensland Haemophilia Centre, Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane and University of Queensland, Brisbane, QLD, Australia; ¹³Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy; ¹⁴Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy; ¹⁵BioMarin Pharmaceutical Inc., Novato, CA, USA; ¹⁶Hemocentro UNICAMP, Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil

Disclosures

• I have served on advisory boards and speakers bureaus or as a consultant for Bayer, BioMarin Pharmaceutical Inc., CSL Behring, Genentech, Novo Nordisk, Octapharma, Sanofi, and Takeda

Valoctocogene roxaparvovec for severe hemophilia A

Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) is a liver-directed gene therapy that transfers a FVIII coding sequence to enable FVIII production in people with severe hemophilia A (FVIII ≤1 IU/dL)^{1,2}

In the open-label, phase 3 GENEr8-1 trial, participants who received 6x10¹³ vg/kg valoctocogene roxaparvovec had improved protection from bleeds compared with regular FVIII prophylaxis over 3 years^{1,2}

Here, we present outcomes 4 years after gene transfer

1. Ozelo M, et al. N Engl J Med. 2022;386(11):1013-25. 2. Mahlangu J, et al. N Engl J Med. 2023;388:694-705.

3 AAV, adeno-associated virus; FVIII, factor VIII; hFVIII-SQ, human FVIII, SQ variant.

Study design

Eligibility

- Adult men with severe hemophilia A (FVIII ≤ 1 IU/dL)
- Previously receiving FVIII prophylaxis
- No history of FVIII inhibitors or anti-AAV5 antibodies
- No significant liver dysfunction, fibrosis, or cirrhosis

Endpoints

- FVIII activity
- Change from baseline during post-prophylaxis
 - Annualized bleeding rate
 - Annualized FVIII infusion rate
 - HRQOL
- Safety

Participant disposition

Baseline characteristics

	Rollover population	mITT	ITT		
Baseline characteristics	N = 112	N = 132	N = 134		
Age, years, mean ± SD	31.8 ± 10.6	31.4 ± 10.1	31.7 ± 10.3		
Race, n (%)					
White	78 (69.6)	94 (71.2)	96 (71.6)		
Asian	17 (15.2)	19 (14.4)	19 (14.2)		
Black or African American	14 (12.5)	15 (11.4)	15 (11.2)		
Hawaiian or Pacific Islander	1 (0.9)	1 (0.8)	1 (0.7)		
Not provided	2 (1.8)	3 (2.3)	3 (2.2)		
Hispanic or Latino ethnicity, n (%)	5 (4.5)	7 (5.3)	7 (5.2)		
BMI, kg/m ² , mean ± SD	25.2 ± 4.7	25.3 ± 4.6	25.3 ± 4.6		
Medical history, n (%)					
Hepatitis B	17 (15.2)	18 (13.6)	20 (14.9)		
Hepatitis C	33 (29.5)	39 (29.5)	41 (30.6)		
HIV	0	0	2 (1.5)		
Number of problem joints, ^a n (%)					
0	82 (73.2)	95 (72.0)	97 (72.4)		
1	13 (11.6)	17 (12.9)	17 (12.7)		
2	9 (8.0)	9 (6.8)	9 (6.7)		
3	6 (5.4)	8 (6.1)	8 (6.0)		
>3	2 (1.8)	3 (2.3)	3 (2.2)		

^aProblem joints were those with chronic joint pain, chronic synovitis, hemophilic arthropathy, limited motion, or recurrent bleeding.

6 BMI, body mass index; HIV, human immunodeficiency virus; ITT, intent-to-treat; mITT, modified intent-to-treat; SD, standard deviation.

No new safety signals in year 4

ITT population

In year 4:

No new safety signals

ALT elevations remained the most common AE in year 4

No treatment-related SAEs occurred

No malignancies occurred in year 4

As of the cutoff date:

No FVIII inhibitors were observed No thromboembolic events occurred

Participants, n (%)		With AEs in year 4 (N = 131)
AEs		106 (80.9)
SAEs		13 (9.9)
Treatment-related AEs ^a		10 (7.6)
Glucocorticoid-related AEs		1 (0.8)
AEs of special interest	ALT elevation	56 (42.7)
	ALT elevation ≥ grade 3	1 (0.8) ^b
	Potential Hy's law case	0
	Infusion-related reactions ^c	0
	Systemic hypersensitivity	0
	Anaphylactic or anaphylactoid reactions	0
	Thromboembolic events	0
	Anti-FVIII neutralizing antibodies	0
	Malignancy (except non- melanoma skin cancer)	0

^aTreatment-related and glucocorticoid-related AEs were assessed by the investigator.

^bThis event was downgraded after the data cutoff.

^cInfusion-related reactions were defined as AEs occurring during valoctocogene roxaparvovec infusion or within 6 hours post-infusion.

7 AE, adverse event; ALT, alanine aminotransferase; FVIII, factor VIII; ITT, intent-to-treat; SAE, serious AE.

ALT elevation and corticosteroid use

ITT population

In year 4:

56 (42.7%) participants had an ALT

No participants used glucocorticoids to manage ALT elevations

Since year 2, no participants used glucocorticoids to manage ALT elevations

During year 4	With AEs in year 4 (N = 131)
ALT elevation >ULN, n (%)	21 (16.0)
ALT elevation >1.5x baseline, n (%)	55 (42.0)
Used corticosteroids for any purpose, n (%)	3 (2.3)
Total duration, weeks, median (min, max)	1.4 (1.0, 12.1)
Total dose, mg, median (min, max)	200.0 (200, 1475)
Used corticosteroids for ALT elevation, n (%)	0 (0.0)
Total duration, weeks, median (min, max)	NA
Total dose, mg, median (min, max)	NA

FVIII activity between years 3 and 4

mITT population (chromogenic substrate assay)

Because 2 participants did not reach year 4 follow-up, week 208 data are based on 130 participants. For participants who discontinued the study, missing FVIII values post-discontinuation were imputed as 0 IU/dL through the data cutoff date.

9 CSA, chromogenic substrate assay; FVIII, factor VIII; mITT, modified intent-to-treat; Q, quartile; SE, standard error.

FVIII activity ranges at the end of year 4

mITT population (chromogenic substrate assay)

Because 2 participants did not reach year 4 follow-up, week 208 data are based on 130 participants. For participants who discontinued the study, missing FVIII values post-discontinuation were imputed as 0 IU/dL through the data cutoff date.

10 CSA, chromogenic substrate assay; FVIII, factor VIII; LLOQ, lower limit of quantification; mITT, modified intent-to-treat.

FVIII activity between years 3 and 4

mITT population (one-stage assay)

Because 2 participants did not reach year 4 follow-up, week 208 data are based on 130 participants. For participants who discontinued the study, missing FVIII values post-discontinuation were imputed as 0 IU/dL through the data cutoff date.

11 FVIII, factor VIII; mITT, modified intent-to-treat; OSA, one-stage assay; Q, quartile; SE, standard error.

FVIII activity ranges at the end of year 4

mITT population (one-stage assay)

Because 2 participants did not reach year 4 follow-up, week 208 data are based on 130 participants. For participants who discontinued the study, missing FVIII values post-discontinuation were imputed as 0 IU/dL through the data cutoff date.

12 FVIII, factor VIII; LLOQ, lower limit of quantification; mITT, modified intent-to-treat; OSA, one-stage assay.

Reduction in treated bleeds maintained over 4 years

Rollover population

Missing data were not imputed.

13 ABR, annualized bleeding rate; Q, quartile; SD, standard deviation.

Reduction of FVIII infusion rate maintained through year 4

Rollover population

Missing data were not imputed.

14 AFR, annualized FVIII infusion rate; HA, hemophilia A; FVIII, factor VIII; Q, quartile; SD, standard deviation.

Haemo-QOL-A improvement maintained after 4 years

mITT population

1. Quinn J, et al. Patient Relat Outcome Meas. 2022;13:169-80.

P* <0.05, *P* <0.001. Haemo-QOL-A Total Score change from baseline results are based on available data at each time point. Data were excluded after participants resumed prophylaxis.

5 CI, confidence interval; CID, clinically important difference; Haemo-QOL-A, Haemophilia-Specific Quality of Life Questionnaire for Adults; mITT, modified intent-to-treat.

Conclusions

After 4 years, a single infusion of valoctocogene roxaparvovec provided durable bleeding protection and improved HRQOL with an acceptable safety profile

No new safety signals

- ALT elevation remained the most common AE in year 4
- No glucocorticoids were used for ALT elevations in year 4
- No FVIII inhibitors or thromboembolic events

FVIII activity was maintained

- FVIII activity remained in the mild hemophilia range
- Slope of decline in FVIII activity continues to approach 0

Durable hemostatic efficacy

- Rate of treated bleeds during year 4 remains decreased >80% from baseline
- Most participants had no treated bleeds during year 4

Maintained improvements in HRQOL

 Clinically relevant improvements in Haemo-QOL-A Total Score were maintained at the end of year 4

AE, adverse event; ALT, alanine aminotransferase; FVIII, factor VIII; Haemo-QOL-A, Haemophilia-Specific Quality of Life Questionnaire for Adults; HRQOL, health-

^{1.} Mahlangu J, et al. N Engl J Med. 2023;388:694-705.

Acknowledgments

- Thank you to all trial participants, their families, study site personnel, and investigators
- Funding for this study was provided by BioMarin Pharmaceutical Inc.
- Medical writing support was provided by Amin Ghane, PhD, of AlphaBioCom, a Red Nucleus company, and funded by BioMarin Pharmaceutical Inc.

Scan for a digital copy of this presentation

