

Persistent and stable therapeutic levels of transgenic FVII expression following AAV delivery to adult and infant hemophilic dogs

P. Batty,^{1,2} A.M. Ismail,³ B. Yates,³ L. Swystun,¹ A. Mo,¹ L. Harpell,¹ A. Pender,¹ A. Menard,⁴ A. Winterborn,⁵ S. Salcido,³ A. Gonzalez,³ C.K. Kim,³ S. Brennan,³ S. Fong,³ D. Lillicrap¹

¹Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada; ²Cancer Institute, University College London, London, UK; ³BioMarin Pharmaceutical Inc., Novato, CA, USA; ⁴Kingston Health Sciences Centre, Kingston, Canada; ⁵Animal Care Services, Queen's University, Kingston, Canada

Introduction

- AAV5-FVIII gene therapy is approved in the U.S. and conditionally approved in Europe for the treatment of adults with severe hemophilia A
- The majority of FVIII is thought to be expressed by nonintegrated episomal structures
- AAV-FVIII treatment during childhood could prevent the development of arthropathy and improve quality of life
- Neonatal, infant, and adult severe hemophilia A dogs (Table 1) received a single infusion of codon-optimized or wild-type AAV-canine FVIII

ITR = Inverted terminal repeat. HLP = Hybrid liver promoter **PA** = Polyadenylation sequence

Methods

• Serial liver biopsies (Figure 2) underwent droplet digital PCR and histological analyses

 The factors influencing hepatocyte transduction and kinetics of AAV-cFVIII vector processing remain unknown

Aims To evaluate the influence of: 1. Treatment age 2. Codon optimization 3. Vector dose

%

FVIII:C

on FVIII expression and AAV-FVIII genome processing kinetics in a canine model of severe hemophilia A

Figure 1. Structure of the AAV5-cFVIII vector

Figure 2. Study timeline

Cohort	Ν	Avg Age at Treatment	Vector (AAV-cFVIII)	Sex (% M)	Avg Treatment Weight (kg)	Target Dose (vg/kg)	Avg Total Vector Genomes
Neonatal	2	2 weeks	Codon-optimized	0	1.10	2.0e14	2.2e14
Infant	3	2 months	Codon-optimized	33.3	4.33	2.0e14	8.67e14
Adult WT	3	6.0 years	Wild-type	100	12.60	6.0e13 – 2.0e14	1.53e15
Adult CO (6e13)	4	4.3 years	Codon-optimized	100	16.3	6.0e13	1.07e15
Adult CO (2e14)	3	3.9 years	Codon-optimized	100	17.0	2.0e14	3.69e15

Table 1. Summary of AAV-cFVIII treatment cohorts. M, male; WT, wild-type; CO, codon-optimized; AAV, adeno-associated virus; BDD, B-domain deleted; vg, vector genomes; cFVIII, canine factor VIII; Avg, average.

Figure 3. Stable therapeutic FVIII:C expression was seen in adult and infant hemophilia dogs treated with **CO-AAV-cFVIII.** OSA, one-stage assay, lower level of quantification = 2%. \pm SEM.

Figure 6. Histopathological analyses of liver biopsies at all time points were normal. Hematoxylin and eosin staining.

Months post-AAV-cFVIII Figure 4. All dogs experienced improved WBCT (whole blood clot time). Normal WBCT = 4-6 minutes. WBCT in hemophilia A dogs = 13.9 minutes; ±SEM.

Figure 5. Vector hepatocyte transduction was high, declined over time, and then stabilized as measured by DNA in situ hybridization. ±SEM.

Figure 7. No elevation in ER stress or increased GRP78 staining in FVIII-expressing hepatocytes was observed. ±SEM.

Figure 8. Full-length circular vector genomes were highest at early time points, then declined and remained stable for 12-18 months. ±SEM.

🛨 Neonatal Infant

0.006₇

Figure 10. For infant and neonatal dogs, cFVIII mRNA

levels positively correlated with FVIII activity. OSA, one-

Figure 11. For adult dogs, cFVIII mRNA levels positively correlated with FVIII activity. OSA, onestage assay.

Conclusions

stage assay.

- Adult and infant dogs treated with CO AAV-cFVIII displayed efficient dose-dependent hepatocyte transduction
- Hepatocyte transduction and circular full-length AAV-cFVIII copies were highest early post-treatment and maintained for 12-18 months with therapeutic transgenic FVIII:C expression (10-25%)
- Circular full-length vector genome levels positively correlated with plasma FVIII:C for infant/neonatal (r=0.88, p<0.001) and adult dogs (r=0.66, p=0.003) at later time points (data not shown)
- Neonatal-treated and WT-AAV-cFVIII-treated adult dogs had reduced FVIII transcript levels compared with other study cohorts

Acknowledgements

This study was supported in part by a Canadian Institutes for Health Research (CIHR) Foundation Grant FDN 154285, and by a grant from **BioMarin Pharmaceutical Inc.**