Efficacy and safety of valoctocogene roxaparvovec 4 years after gene transfer in GENEr8-1

Andrew D Leavitt¹, Johnny Mahlangu², Priyanka Raheja³, Emily Symington⁴, Doris V Quon⁵, Adam Giermasz⁶, Gili Kenet⁷, Gillian Lowe⁸, Nigel S Key⁹, Carolyn M Millar^{10,11}, Steven W Pipe¹², Bella Madan¹³, Sheng-Chieh Chou¹⁴, Robert Klamroth^{15,16}, Jane Mason^{17,18}, Hervé Chambost¹⁹, Flora Peyvandi^{20,21}, Hua Yu²², Tara M Robinson²³, and Margareth C Ozelo²⁴ for the GENEr8-1 Trial Group

International Society on Thrombosis and Haemostasis 2024

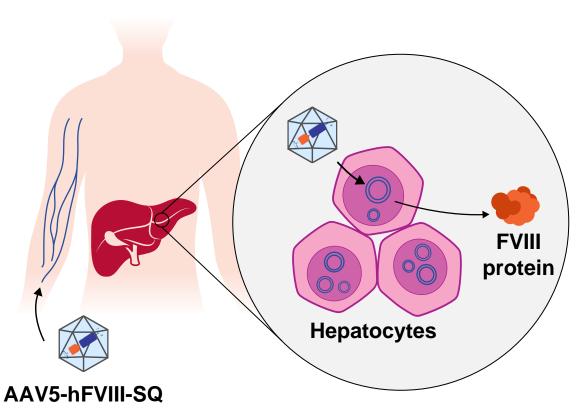
BOMARIN

¹Professor and Medical Director, Adult Hemophilia Treatment Center, University of California San Francisco, San Francisco, CA, USA; ²Professor and Head, Hemophilia Comprehensive Care Center, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand and NHLS, Johannesburg, South Africa; ³Consultant Haematologist, The Royal London Hospital Haemophilia Centre, Barts Health NHS trust, London, UK; ⁴Consultant Haematologist, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; ⁵Medical Director, Orthopaedic Hemophilia Treatment Center, Los Angeles, CA, USA; 6Co-Director, Hemophilia Treatment Center, University of California Davis, Sacramento, CA, USA; ⁷Director, The National Hemophilia Center and Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer, Tel Aviv University, Tel Aviv, Israel; 8Consultant Haematologist, West Midlands Adult Haemophilia Comprehensive Care Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; 9Director, UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, USA; 10Honorary Clinical Senior Lecturer, Centre for Haematology, Imperial College London, London, UK; ¹¹Consultant Haematologist, Imperial College Healthcare NHS Trust, London, UK; ¹²Professor, Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI, USA; 13Consultant Haematologist, Guy's and St Thomas' NHS Foundation Trust, London, UK; ¹⁴Hematologist, Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan: ¹⁵Director, Vascular Medicine and Haemostaseology, Vivantes Klinikum im Friedrichshain, Berlin, Germany: ¹⁶Adjunct Professor, Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany; ¹⁷Consultant Haematologist and Director, Queensland Haemophilia Centre, Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; ¹⁸Senior Lecturer, University of Queensland, Brisbane, QLD, Australia; ¹⁹Professor and Head, AP-HM, Department of Pediatric Hematology Oncology, Children Hospital La Timone & Aix Marseille University, INSERM, INRA, C2VN, Marseille, France; ²⁰Director, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy; ²¹Professor, Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy; ²²Director of Biostatistics, BioMarin Pharmaceutical Inc., Novato, CA, USA; ²³Executive Medical Director, Clinical Development, BioMarin Pharmaceutical Inc., Novato, CA, USA; ²⁴Professor, Hemocentro UNICAMP. Department of Internal Medicine. School of Medical Sciences. University of Campinas. Campinas. SP. Brazil

Disclosures

• I have participated in advisory boards for BioMarin Pharmaceutical Inc., CSL, Pfizer, Sanofi, and Sobi

Valoctocogene roxaparvovec for severe hemophilia A


Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) is a liver-directed gene therapy that transfers a B-domain-deleted FVIII coding sequence to enable FVIII production in people with severe hemophilia A (FVIII ≤ 1 IU/dL)^{1,2}

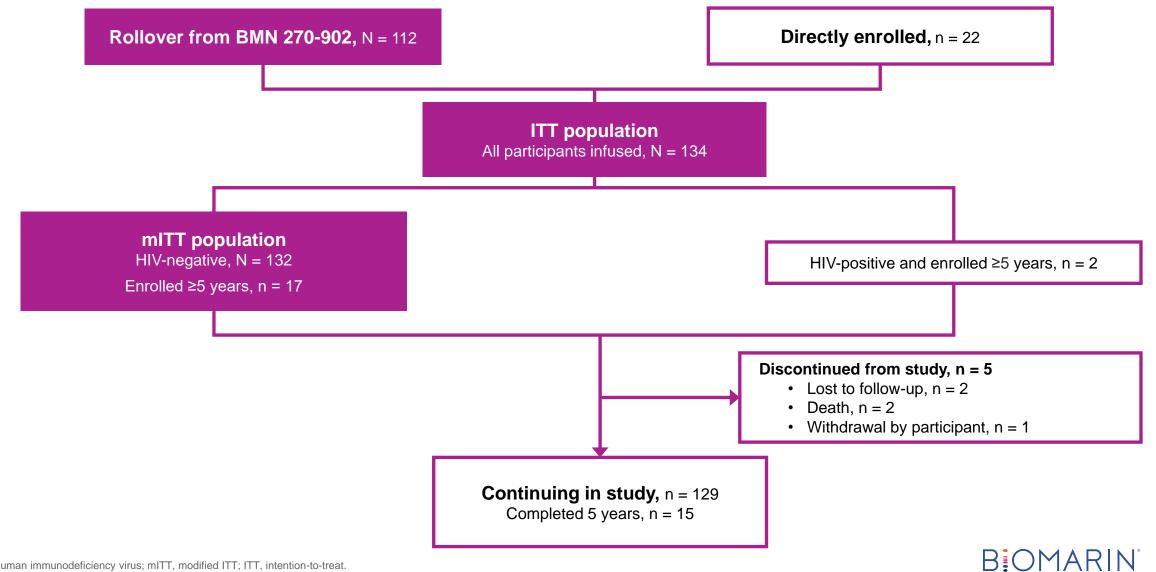
In the open-label, phase 3 GENEr8-1 trial, participants who received 6x10¹³ vg/kg valoctocogene roxaparvovec had improved protection from bleeds compared with regular FVIII prophylaxis over 3 years^{1,2}

Here, we evaluate efficacy and safety outcomes 4 years after treatment

1. Ozelo M, et al. *N Engl J Med.* 2022;386(11):1013-25. 2. Mahlangu J, et al. *N Engl J Med.* 2023;388:694-705. AAV5, adeno-associated virus serotype 5; FVIII, factor VIII; hFVIII-SQ, human FVIII, SQ variant.


Study design

Eligibility


- Adult men with severe hemophilia A (FVIII ≤ 1 IU/dL) ٠
- Previously receiving FVIII prophylaxis •
- No history of FVIII inhibitors or anti-AAV5 antibodies •
- No significant liver dysfunction, fibrosis, or cirrhosis •

Endpoints

- FVIII activity
- Change from baseline •
 - Annualized bleeding rate
 - Annualized FVIII infusion rate
 - HRQOL (covered in a separate presentation)
- Safety

Participant disposition

Baseline characteristics

	Rollover population	mITT	ITT				
Baseline characteristics	N = 112	N = 132	N = 134				
Age, years, mean (range)	31.8 (19–70)	31.4 (18–70)	31.7 (18–70)				
Race, n (%)							
White	78 (69.6)	94 (71.2)	96 (71.6)				
Asian	17 (15.2)	19 (14.4)	19 (14.2)				
Black or African American	14 (12.5)	15 (11.4)	15 (11.2)				
Hawaiian or Pacific Islander	1 (0.9)	1 (0.8)	1 (0.7)				
Not provided	2 (1.8)	3 (2.3)	3 (2.2)				
Hispanic or Latino ethnicity, n (%)	5 (4.5)	7 (5.3)	7 (5.2)				
BMI, kg/m², mean ± SD	25.2 ± 4.7	25.3 ± 4.6	25.3 ± 4.6				
Medical history, n (%)							
Hepatitis B	17 (15.2)	18 (13.6)	20 (14.9)				
Hepatitis C	33 (29.5)	39 (29.5)	41 (30.6)				
HIV	0	0	2 (1.5)				
Number of problem joints, ^a n (%)							
0	82 (73.2)	95 (72.0)	97 (72.4)				
1	13 (11.6)	17 (12.9)	17 (12.7)				
2	9 (8.0)	9 (6.8)	9 (6.7)				
3	6 (5.4)	8 (6.1)	8 (6.0)				
>3	2 (1.8)	3 (2.3)	3 (2.2)				

^aProblem joints were those with chronic joint pain, chronic synovitis, hemophilic arthropathy, limited motion, or recurrent bleeding. BMI, body mass index; HIV, human immunodeficiency virus; ITT, intention-to-treat; mITT, modified ITT; SD, standard deviation.

6

No new safety signals in year 4 ITT population

In year 4

No new safety signals

 Low-grade, transient ALT elevations remained the most common AE in year 4
No treatment-related SAEs occurred
No new malignancies

7

As of the cutoff date No FVIII inhibitors were observed No thromboembolic events occurred

Participant	ts, n (%)	Year 1 (N = 134)	Year 2 (N = 134)	Year 3 (N = 131)	Year 4 (N = 131)	All follow-up
AEs		134 (100.0)	113 (84.3)	105 (80.2)	106 (80.9)	134 (100.0)
SAEs		21 (15.7)	6 (4.5)	9 (6.9)	13 (9.9)	37 (27.6)
Treatment-related AEs ^a		123 (91.8)	28 (20.9)	15 (11.5)	10 (7.6)	123 (91.8)
Glucocorticoid-related AEs ^a		80 (59.7)	10 (7.5)	1 (0.8)	1 (0.8)	81 (60.4)
AEs of special interest	ALT elevation	114 (85.1)	40 (29.9)	31 (23.7)	56 (42.7)	121 (90.3)
	ALT elevation ≥grade 3	11 (8.2)	1 (0.7)	0	1 (0.8) ^b	12 (9.0)
	Potential Hy's law case	0	0	0	0	0
	Infusion-related reactions ^c	12 (9.0)	0	0	0	12 (9.0)
	Systemic hypersensitivity	7 (5.2)	0	0	0	7 (5.2)
	Anaphylactic or anaphylactoid reactions	3 (2.2)	0	0	0	3 (2.2)
	Thromboembolic events	0	0	0	0	0
	Anti-FVIII neutralizing antibodies	0	0	0	0	0
	Malignancy (except nonmelanoma skin cancer)	0	0	1 (0.8)	0	1 (0.7)

^aTreatment-related and glucocorticoid-related AEs were assessed by the investigator.

^bThis event was downgraded after the data cutoff (November 15, 2023).

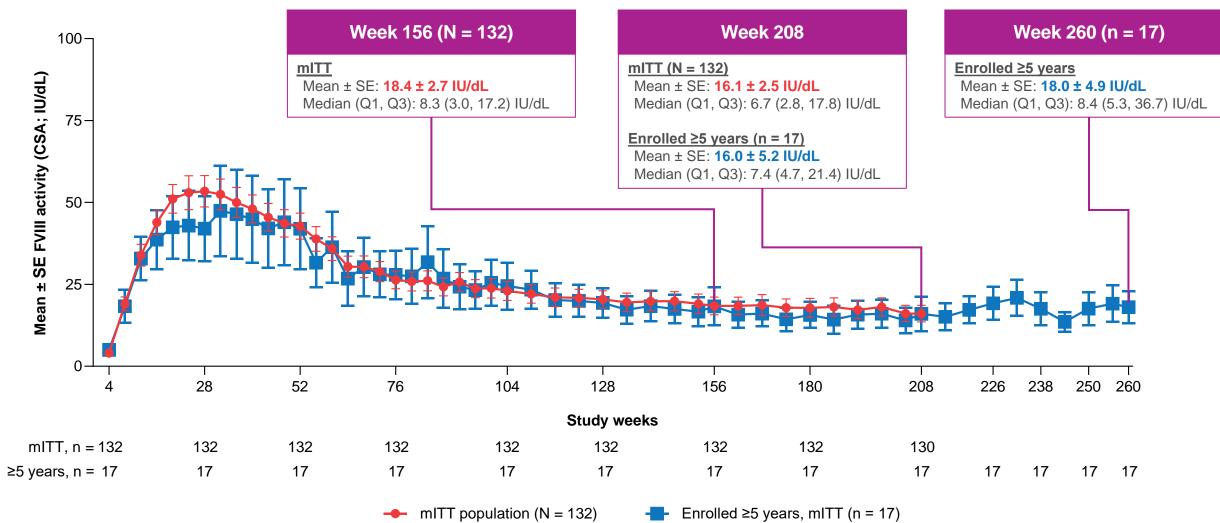
clnfusion-related reactions were defined as AEs occurring during valoctocogene roxaparvovec infusion or within 6 hours post-infusion.

AE, adverse event; ALT, alanine aminotransferase; FVIII, factor VIII; ITT, intention-to-treat; SAE, serious AE.

ALT elevation and glucocorticoid use

In year 4

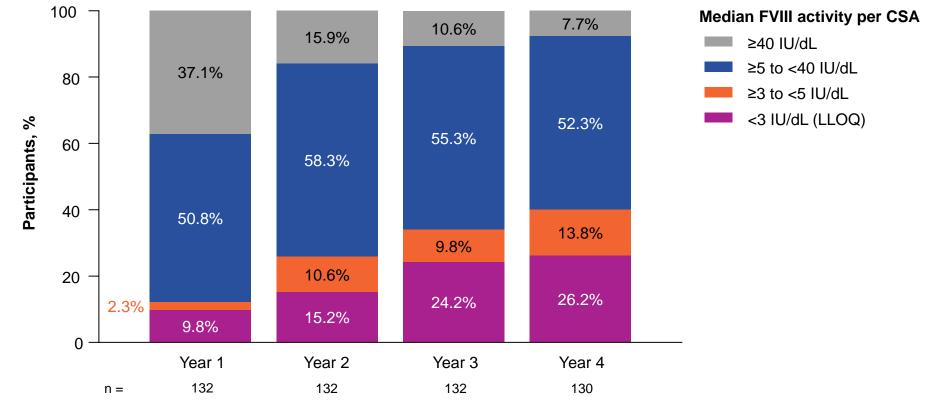
56 (42.7%) participants experienced an ALT elevation, most of which were lowgrade and transient


8

No participants initiated glucocorticoids to manage ALT elevations after week 84

During year 4	With AEs in year 4 (N = 131)		
ALT elevation >ULN, n (%)	21 (16.0)		
ALT elevation >1.5x baseline, n (%)	55 (42.0)		
Used glucocorticoids for any purpose, n (%)	3 (2.3)		
Total duration, weeks, median (range)	1.4 (1.0–12.1)		
Total dose, mg, median (range)	200.0 (200–1475)		
Used glucocorticoids for ALT elevation, n (%)	0 (0.0)		
Total duration, weeks, median (range)	NA		
Total dose, mg, median (range)	NA		

FVIII activity (chromogenic) maintained between years 3 and 4

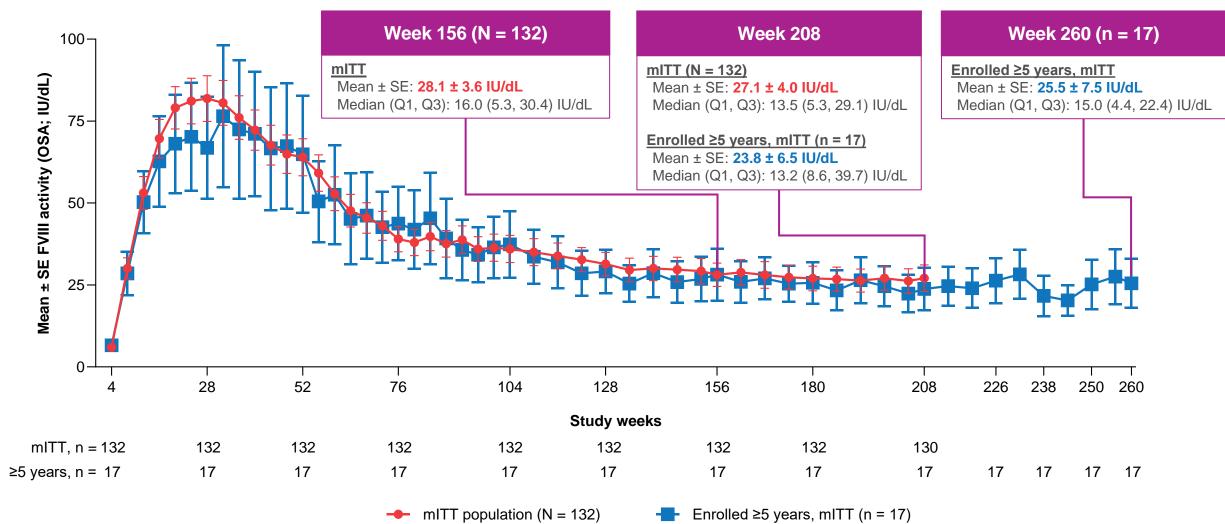


Because 2 participants did not reach year 4 follow-up, week 208 data are based on 130 participants. For participants who discontinued the study, missing FVIII values post-discontinuation were imputed as 0 IU/dL through the data cutoff date.

9 CSA, chromogenic substrate assay; FVIII, factor VIII; mITT, modified intention-to-treat; Q, quartile; SE, standard error.

FVIII activity (chromogenic) ranges at the end of year 4 mITT population

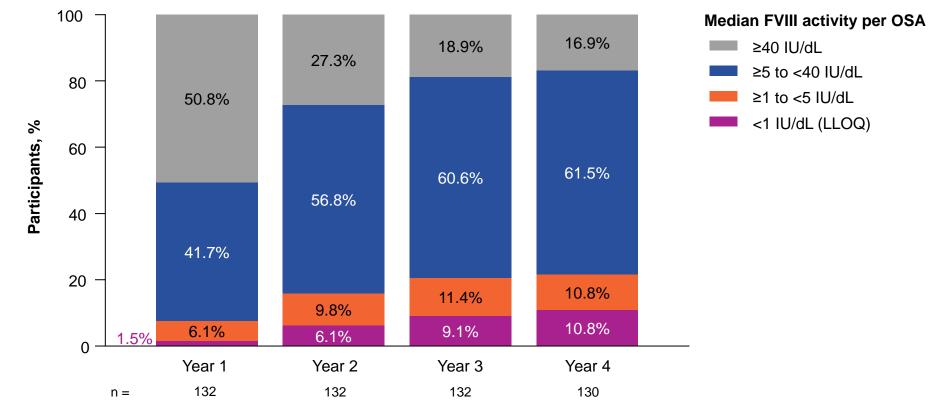
Most participants remain in the mild hemophilia range



Because 2 participants did not reach year 4 follow-up, week 208 data are based on 130 participants. For participants who discontinued the study, missing FVIII values post-discontinuation were imputed as 0 IU/dL through the data cutoff date.

10 CSA, chromogenic substrate assay; FVIII, factor VIII; LLOQ, lower limit of quantification; mITT, modified intention-to-treat.

FVIII activity (one-stage) maintained between years 3 and 4 mITT population



Because 2 participants did not reach year 4 follow-up, week 208 data are based on 130 participants. For participants who discontinued the study, missing FVIII values post-discontinuation were imputed as 0 IU/dL through the data cutoff date.

11 FVIII, factor VIII; mITT, modified intention-to-treat; OSA, one-stage assay; Q, quartile; SE, standard error.

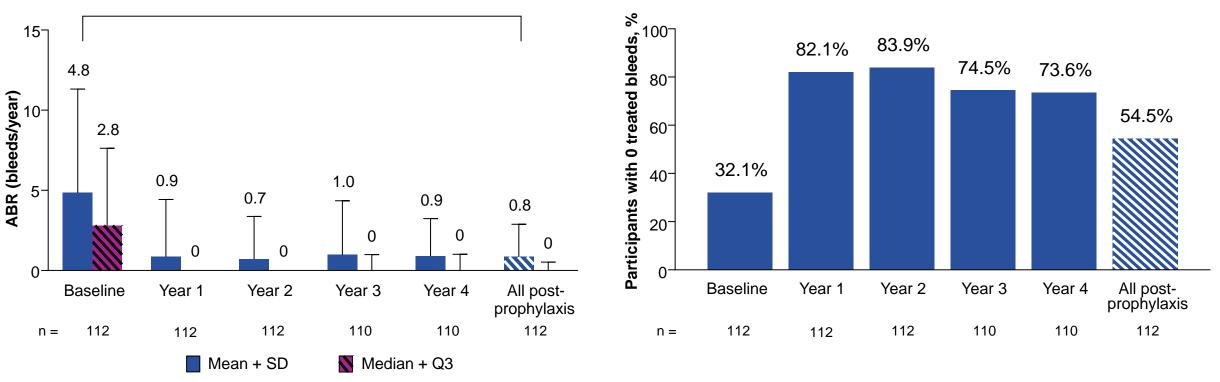
FVIII activity (one-stage) ranges at the end of year 4 mITT population

Most participants remain in the mild hemophilia range

Because 2 participants did not reach year 4 follow-up, week 208 data are based on 130 participants. For participants who discontinued the study, missing FVIII values post-discontinuation were imputed as 0 IU/dL through the data cutoff date.

12 FVIII, factor VIII; LLOQ, lower limit of quantification; mITT, modified intention-to-treat; OSA, one-stage assay.

Reduction in treated bleeds maintained over 4 years Rollover population

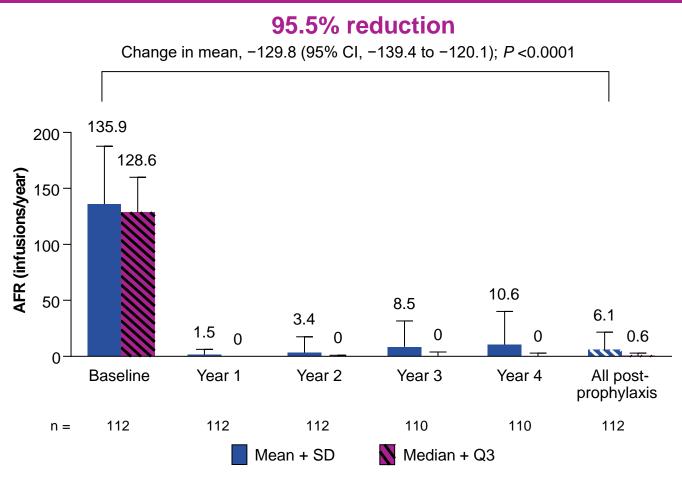

 \bigcirc°

ABR for treated bleeds decreased >80% from baseline during the post-prophylaxis period

In year 4, >70% of participants had no treated bleeds

82.6% reduction

Change in mean, -4.0 (95% CI, -5.2 to -2.8); P < 0.0001

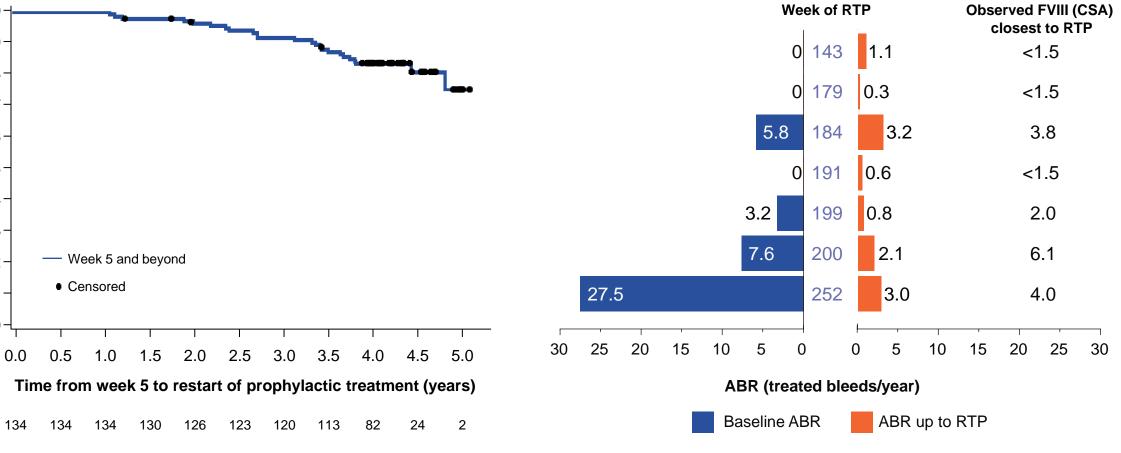


Missing data were not imputed.

13 ABR, annualized bleeding rate; CI, confidence interval; Q, quartile; SD, standard deviation.

Reduction of FVIII infusion rate maintained through year 4 Rollover population

Annualized FVIII infusion rate decreased >95% from baseline during the post-prophylaxis period


Missing data were not imputed.

14 AFR, annualized FVIII infusion rate; CI, confidence interval; HA, hemophilia A; FVIII, factor VIII; Q, quartile; SD, standard deviation.

Most participants remain off prophylaxis ITT population

Overall, 24 participants resumed prophylaxis

Since the previous data cutoff, 7 additional participants resumed prophylaxis

Missing data were not imputed.

1.0-

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

N at risk:

Prophylactic treatment-free probability

15 ABR, annualized bleeding rate; CSA, chromogenic substrate assay; FVIII, factor VIII; ITT, intention-to-treat; RTP, return to prophylaxis.

Conclusions

A single infusion of valoctocogene roxaparvovec provides durable bleeding protection for 4 years with an acceptable safety profile

No new safety signals

- ALT elevation remained the most common AE in year 4; none have required glucocorticoid use since year 2
- No FVIII inhibitors or thromboembolic events

FVIII activity was maintained

- FVIII activity remained in the mild hemophilia range
- Slope of decline in FVIII activity continues to approach 0
- Among the 17 participants dosed ≥5 years prior, year 5 values were similar to year 4

♦ Durable hemostatic efficacy

- Rate of treated bleeds in the post-prophylaxis period remains decreased >80% from baseline
- Most participants had no treated bleeds during year 4
 - Most participants remain off prophylaxis
 - Decisions to RTP were individual and part of a shared decisionmaking process that considered multiple factors

Acknowledgments

- Thank you to all trial participants, their families, study-site personnel, and investigators
- Funding for this study was provided by BioMarin Pharmaceutical Inc.
- Medical writing support was provided by Amin Ghane, PhD, of AlphaBioCom, a Red Nucleus company, and funded by BioMarin Pharmaceutical Inc.

Scan for a digital copy of this presentation

