PERSISTENCE OF GROWTH PROMOTING EFFECTS IN CHILDREN WITH ACHONDROPLASIA UP TO 7 YEARS: UPDATE FROM A PHASE 2 EXTENSION STUDY WITH VOSORITIDE

Hirofumi Tokuoka¹, Julie Hoover-Fong², Melita Irving³, Carlos A. Bacino⁴, Joel Charrow⁵, Carlos Prada⁶, Valerie Cormier-Daire⁷, Lynda E. Polgreen⁸, Paul Harmatz⁹, Sajda Ghani¹⁰, Andrea Low¹¹, Jonathan Day¹⁰, John Phillips¹², Ravi Savarirayan¹³

- 1. BioMarin Pharmaceutical Japan K.K. Tokyo, Japan
- 2. Johns Hopkins University School of Medicine, Baltimore, MD, USA
- 3. Guy's and St. Thomas' NHS Foundation Trust, Evelina Children's Hospital, London, UK
- 4. Baylor College of Medicine, Houston, TX, USA
- 5. Emory University, Atlanta, GA, USA
- 6. Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- 7. Reference Center for Skeletal Dysplasia, Paris University, Hopital Necker-Enfants Malades, Paris, France

- 8. Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine UCLA, Los Angeles, CA, USA
- 9. UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
- 10. BioMarin (U.K.) Limited, London, UK
- 11. BioMarin Pharmaceutical Inc., Novato, CA, USA
- 12. Vanderbilt University Medical Center, Nashville, TN, USA
- 13. Murdoch Children's Research Institute, Royal Children's Hospital, and University of Melbourne, Parkville, Australia

日本小児内分泌学会 COI 開示

発表者名: @Hirofumi Tokuoka, Julie Hoover-Fong, Melita Irving, Carlos A. Bacino, Joel Charrow, Carlos Prada, Valerie Cormier-Daire, Lynda E. Polgreen, Paul Harmatz, Sajda Ghani, Andrea Low, Jonathan Day, John Phillips, Ravi Savarirayan

演題発表内容に関連し、筆頭および共同発表者が開示すべきCOI関係にある企業などとして、

① 役員·顧問: BioMarin

② 株保有·利益: BioMarin

④ 講演料: BioMarin

⑥ 治験·受託研究·共同研究費: BioMarin

⑦ 奨学寄付金: BioMarin

Annual Clinical Genetics Meeting (ACMG) 2024

Persistence of growth-promoting effects in children with achondroplasia up to 7 years: update from a Phase 2 extension study with vosoritide

Hoover-Fong JE¹, Irving M², Bacino CA³, Charrow J⁴, Prada C⁴, Cormier-Daire V⁵, Polgreen LE⁶, Harmatz P⁷, Ghani S⁸, Fisheleva E⁸, Low A⁹, Day J⁸, Phillips III J¹⁰, Savarirayan R¹¹

'Johns Hopkins University School of Medicine, Baltimore, MD, USA; 2Guy's and St. Thomas' NHS Foundation Trust, Evelina Children's Hospital, London, UK; 3Baylor College of Medicine, Houston, TX, USA; 4Emory University, Atlanta, GA, USA; 5Reference Center for Skeletal Dysplasia, Paris University, Hopital Necker-Enfants Malades, Paris, France; 6Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine – UCLA, Los Angeles, CA, USA; 7UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA; 8BioMarin Pharmaceutical Inc., Novato, CA, USA; 9BioMarin (U.K.) Limited, London, UK; 10Vanderbilt University Medical Center, Nashville, TN, USA; 11Murdoch Children's Research Institute, Royal Children's Hospital, and University of Melbourne, Parkville, Australia

Vosoritide: targeted therapy for achondroplasia

- Achondroplasia (ACH) is the most common form of disproportionate short stature (approx. 1:25,000 live births)^{1,2}
- ACH is caused by a pathogenic variant in FGFR3 that constitutively activates the downstream inhibitory signaling pathway in chondrocytes, leading to impaired endochondral bone growth and multiple complications^{1,2}
- CNP down-regulates aberrant FGFR3 signaling in chondrocytes by inhibiting the MAPK-ERK pathway^{3,4}
- Vosoritide is based on naturally-occurring CNP engineered to resist degradation and increase the half-life⁵

Increase in growth was demonstrated with vosoritide in clinical trials in ACH

- An open-label, 52-week Phase 2 trial (BMN 111-202) and its extension study (BMN 111-205) in children with ACH showed that vosoritide treatment resulted in sustained increases in AGV¹
- A Phase 3 randomized placebo-controlled trial (BMN 111-301) in children with ACH showed a statistically significant improvement in AGV with vosoritide after 52 weeks compared with placebo²; AGV improvement sustained after 2 years of vosoritide treatment in extension study (BMN 111-302)³
- In children with ACH 0–5 years of age, improvement in height Z-score was seen with vosoritide compared with placebo after 52 weeks (111-206)⁴
- Vosoritide is approved for use in children with ACH and open epiphyses from birth in the USA, Japan and Australia, and aged ≥4 months in EU and ≥6 months in Brazil

BMN 111-202: a Phase 2 open-label study in children with ACH

Primary objective

Evaluate the safety and tolerability of daily subcutaneous injections of vosoritide administered for 6 months and up to
24 months

Secondary objectives

- Evaluate change from baseline in annualized growth velocity (AGV)
- Evaluate changes from baseline in growth parameters
- Evaluate changes from baseline in body proportions
- Evaluate dose-exposure and PK profiles of vosoritide in children with ACH

BMN 111-205: a Phase 2 open-label extension study of 202 in children with ACH with follow-up to final adult height

BMN 111-202/205 key eligibility criteria

- Age 5 to 14 years old at screening
- ACH, documented by clinical grounds and confirmed by genetic testing
- At least a 6-month period of pre-treatment growth measurements in BMN 111-901, a clinical assessment study to establish baseline growth in children with ACH

BMN 111-202/205

Analyses methods

- Data cut off February 25, 2023
- Safety
 - Overall safety profile
 - Bone age/chronological age over time

Efficacy

- 12-month interval AGV by age intervals referenced to ACH and average stature AGV¹
- Height Z-score using reference ranges in the untreated ACH population (CLARITY²)
- A comparative analysis was conducted for all subjects with at least 7 years follow-up (N=17) on treatment from the start of receiving 15 or 30 μg/kg. This was a cross sectional analysis and the untreated subjects were matched to each of the subjects in the vosoritide arm at baseline (N=390) and at the 7-year timepoint (N=173) by age (±1 month) and sex. To adjust for baseline differences, the difference at baseline was subtracted from the difference determined at 7 years
- Upper to lower body segment ratio
 - Sensitivity summary provided which only includes assessments at <11 years (females) and <12 years (males)

Demographics of BMN-205 study population based on first dose in 111-202 study

	205 C1 (N=6)	205 C2 (N=6)	205 C3 (N=10)	205 C4 (N=8)
Age at Day 1 of treatment (y)				
Mean (SD)	8.07 (1.43)	8.49 (2.37)	8.54 (1.54)	7.50 (0.95)
Min, Max	6.9, 10.9	6.0, 10.8	6.3, 11.1	5.8, 8.7
Age subgroups (%)				
≥5 to <8 years	4 (66.7)	3 (50.0)	4 (40.0)	4 (50.0)
≥8 to <11 years	2 (33.3)	3 (50.0)	5 (50.0)	4 (50.0)
≥11 to <15 years	0	0	1 (10.0)	0
≥15 to <18 years	0	0	0	0
Sex (%)				
Male	2 (33.3%)	4 (66.7%)	4 (40.0)	3 (37.5)
Female	4 (66.7%)	2 (33.3%)	6 (60.0)	5 (62.5)

BMN 111-202/205 study disposition

Participants rolled over from 111-202

5 of those who discontinued reached FAH

BMN 111-202 and 205 safety summary

	Overall N=30; Exposure: 200.26 person-years	
	Incidence n (%)	Event Rate (AEs/person-year)
AE, n (%)	30 (100.0)	1215 (6.07)
Treatment-related AEs	24 (80.0)	81 (0.40)
AEs leading to study drug discontinuation	1 (3.3)	1 (0.00)
SAEs	8 (26.7)	9 (0.04)
AEs CTCAE Grades ≥3	8 (26.7)	10 (0.05)
Event of interest		
Injection site reactions CTCAE grade ≥2	1 (3.3)	1 (0.00)
Avascular necrosis or osteonecrosis	0	0
Slipped capital femoral epiphysis	0	0
Fractures	1 (3.3)	2 (0.01)

- ISRs continue to remain most common AE, majority remain grade 1 and self-limiting. No long-term sequelae related to daily injections
- None of the SAEs were treatment-related or led to discontinuation of study drug, and were generally attributed to underlying achondroplasia
- There were no deaths in the study

No acceleration of bone age with vosoritide treatment

(ii)

Mean 12-month interval AGV in children treated with vosoritide is higher compared with age-matched untreated children

Height Z-score increased over time

 Additional height gain of 11.03 cm (95% CI [8.62, 13.45]) in 17 subjects treated with 15 μg/kg or 30 μg/kg vosoritide for 7 years versus untreated age- and sex-matched ACH controls

Upper to lower body segment ratios continued to decrease over time

^{*}Assessments beyond these ages are excluded from analysis given any treatment is unlikely to impact proportionality SE, standard error

Conclusions

- Vosoritide continued to be well-tolerated, with no evidence of accelerated skeletal maturation or serious adverse events attributable to study drug over 7 years of treatment
- Vosoritide treatment was consistently associated with higher AGVs in males and females with ACH aged 6–17 years compared with age-matched untreated children with ACH. Mean AGVs of treated children are comparable to that of average stature children prior to puberty but are maintained over a longer duration. There is no evidence of a pubertal growth spurt in children with ACH (treated and untreated).
- Durability of treatment effect is also reflected in improvements in height Z-scores over time
- Upper to lower body segment ratios continued to improve over time, with changes particularly marked in the subset of children aged <11 years (girls)/<12 years (boys) in whom there may be more opportunity to impact this parameter

