ROMA, 6/9 NOVEMBRE 2024

LA PASSIONE DEL SAPERE

EFFICACY AND SAFETY OF VALOCTOCOGENE ROXAPARVOVEC 4 YEARS AFTER GENE TRANSFER IN GENER8-1

Andrew D. Leavitt¹, Johnny Mahlangu², Priyanka Raheja³, Emily Symington⁴, Doris V. Quon⁵, Adam Giermasz⁶, Gili Kenet⁷, Gillian Lowe⁸, Nigel S. Key⁹, Carolyn M. Millar^{10,11}, Steven W. Pipe¹², Bella Madan¹³, Sheng-Chieh Chou¹⁴, Robert Klamroth^{15,16}, Jane Mason^{17,18}, Hervé Chambost¹⁹, Flora Peyvandi^{20,21}, Hua Yu²², Tara M. Robinson²², Margareth C. Ozelo²³

¹Adult Hemophilia Treatment Center, University of California San Francisco, San Francisco, CA, USA; ²Hemophilia Comprehensive Care Center, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand and NHLS, Johannesburg, South Africa; ³The Royal London Hospital Haemophilia Centre, Barts Health NHS Trust, London, UK; ⁴Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; ⁵Medical Orthopaedic Hemophilia Treatment Center, Los Angeles, CA, USA; ⁶Hemophilia Treatment Center, University of California Davis, Sacramento, CA, USA; 7The National Hemophilia Center and Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer, Tel Aviv University, Tel Aviv, Israel; ⁶West Midlands Adult Haemophilia Comprehensive Care Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; ⁶UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, USA; ¹¹Centre for Haematology, Imperial College London, London, UK; ¹¹Imperial College Healthcare NHS Trust, London, UK; ¹²Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI, USA; ¹³Guy's and St Thomas' NHS Foundation Trust, London, UK; ¹⁴Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; ¹⁵Vascular Medicine and Haemostaseology, Vivantes Klinikum im Friedrichshain, Berlin, Germany; ¹⁶Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany; ¹⁶Institute of Experimental Hematology and Transfusion Medicine, University Hospital, Brisbane, OLD, Australia; ¹⁰University, Marseille, France; ²⁰Fondazione IRCCS Californado Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy; ²¹Università degli Studi di Milata Poartment of Internal Medicine, School of Medical Sciences, University of Campina

Efficacy and safety of valoctocogene roxaparvovec 4 years after gene transfer in GENEr8-1

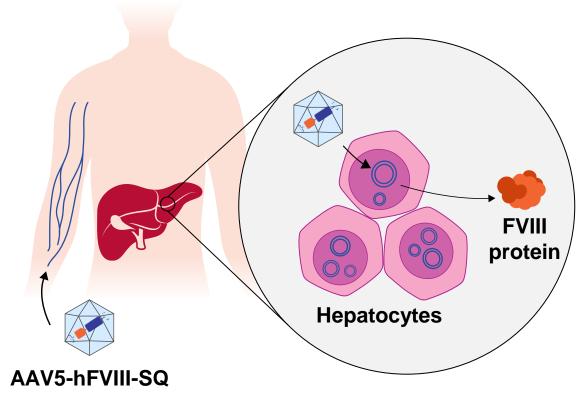
Andrew D. Leavitt¹, Johnny Mahlangu², Priyanka Raheja³, Emily Symington⁴, Doris V. Quon⁵, Adam Giermasz⁶, Gili Kenet⁷, Gillian Lowe⁸, Nigel S. Key⁹, Carolyn M. Millar^{10,11}, Steven W. Pipe¹², Bella Madan¹³, Sheng-Chieh Chou¹⁴, Robert Klamroth^{15,16}, Jane Mason^{17,18}, Hervé Chambost¹⁹, Flora Peyvandi^{20,21}, Hua Yu²², Tara M. Robinson²², and Margareth C. Ozelo²³ for the GENEr8-1 Trial Group

¹Adult Hemophilia Treatment Center, University of California San Francisco, San Francisco, CA, USA; ²Hemophilia Comprehensive Care Center, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand and NHLS, Johannesburg, South Africa; ³The Royal London Hospital Haemophilia Centre. Barts Health NHS Trust. London, UK; ⁴Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; ⁵Medical Orthopaedic Hemophilia Treatment Center, Los Angeles, CA, USA; ⁶Hemophilia Treatment Center, University of California Davis, Sacramento, CA, USA; ⁷The National Hemophilia Center and Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer, Tel Aviv University, Tel Aviv, Israel; 8West Midlands Adult Haemophilia Comprehensive Care Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; ⁹UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, USA; ¹⁰Centre for Haematology, Imperial College London, London, UK; 11Imperial College Healthcare NHS Trust, London, UK; 12Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI, USA; 13Guy's and St Thomas' NHS Foundation Trust, London, UK; ¹⁴Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; ¹⁵Vascular Medicine and Haemostaseology, Vivantes Klinikum im Friedrichshain, Berlin, Germany; ¹⁶Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany; ¹⁷Queensland Haemophilia Centre, Cancer Care Services, Royal Brisbane and Women's Hospital Brisbane, QLD, Australia; 18University of Queensland, Brisbane, QLD, Australia; 19Department of Pediatric Hematology Oncology, Children Hospital La Timone & Aix Marseille University, Marseille, France; ²⁰Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy; ²¹Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy; ²²BioMarin Pharmaceutical Inc., Novato, CA, USA; 23Hemocentro UNICAMP, Department of Internal Medicine. School of Medical Sciences, University of Campinas, Campinas, SP, Brazil

Disclosures

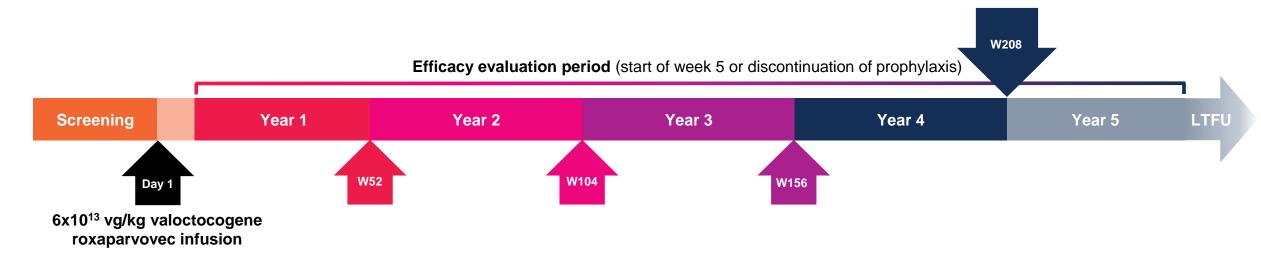
• I have acted as a speaker or member of a speaker bureau for Grifols and Roche, and have served on advisory boards for BioMarin, Roche, Sanofi, Sobi and Takeda

Valoctocogene roxaparvovec for severe hemophilia A


Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) is a liver-directed gene therapy that transfers a B-domain-deleted FVIII coding sequence to enable FVIII production in people with severe hemophilia A (FVIII ≤1 IU/dL)^{1,2}

In the open-label, phase 3 GENEr8-1 trial, participants who received 6x10¹³ vg/kg valoctocogene roxaparvovec had improved protection from bleeds compared with regular FVIII prophylaxis over 3 years^{1,2}

Here, we evaluate efficacy and safety outcomes 4 years after treatment


Study design

Eligibility

- Adult men with severe hemophilia A (FVIII ≤1 IU/dL)
- Previously receiving FVIII prophylaxis
- No history of FVIII inhibitors or anti-AAV5 antibodies
- No significant liver dysfunction, fibrosis, or cirrhosis

Endpoints

- FVIII activity
- Change from baseline
 - Annualized bleeding rate
 - Annualized FVIII infusion rate
 - HRQOL (covered in a separate presentation)
- Safety

Participant disposition

Baseline characteristics

	Rollover population	mITT	ITT
Baseline characteristics	N = 112	N = 132	N = 134
Age, years, mean (range)	31.8 (19–70)	31.4 (18–70)	31.7 (18–70)
Race, n (%)			
White	78 (69.6)	94 (71.2)	96 (71.6)
Asian	17 (15.2)	19 (14.4)	19 (14.2)
Black or African American	14 (12.5)	15 (11.4)	15 (11.2)
Hawaiian or Pacific Islander	1 (0.9)	1 (0.8)	1 (0.7)
Not provided	2 (1.8)	3 (2.3)	3 (2.2)
Hispanic or Latino ethnicity, n (%)	5 (4.5)	7 (5.3)	7 (5.2)
BMI, kg/m ² , mean ± SD	25.2 ± 4.7	25.3 ± 4.6	25.3 ± 4.6
Medical history, n (%)			
Hepatitis B	17 (15.2)	18 (13.6)	20 (14.9)
Hepatitis C	33 (29.5)	39 (29.5)	41 (30.6)
HIV	0	0	2 (1.5)
Number of problem joints, ^a n (%)			
0	82 (73.2)	95 (72.0)	97 (72.4)
1	13 (11.6)	17 (12.9)	17 (12.7)
2	9 (8.0)	9 (6.8)	9 (6.7)
3	6 (5.4)	8 (6.1)	8 (6.0)
>3	2 (1.8)	3 (2.3)	3 (2.2)

No new safety signals in year 4 ITT population

In year 4

4

No new safety signals

 Low-grade, transient ALT elevations remained the most common AE in year 4

No treatment-related SAEs occurred
No new malignancies

As of the cutoff date

No FVIII inhibitors were observed

No thromboembolic events occurred

Participan	ts, n (%)	Year 1 (N = 134)	Year 2 (N = 134)	Year 3 (N = 131)	Year 4 (N = 131)	All follow-up
AEs		134 (100.0)	113 (84.3)	105 (80.2)	106 (80.9)	134 (100.0)
SAEs		21 (15.7)	6 (4.5)	9 (6.9)	13 (9.9)	37 (27.6)
Treatment-related AEs ^a		123 (91.8)	28 (20.9)	15 (11.5)	10 (7.6)	123 (91.8)
Glucocort	icoid-related AEs ^a	80 (59.7)	10 (7.5)	1 (0.8)	1 (0.8)	81 (60.4)
AEs of special interest	ALT elevation	114 (85.1)	40 (29.9)	31 (23.7)	56 (42.7)	121 (90.3)
	ALT elevation ≥grade 3	11 (8.2)	1 (0.7)	0	1 (0.8) ^b	12 (9.0)
	Potential Hy's law case	0	0	0	0	0
	Infusion-related reactions ^c	12 (9.0)	0	0	0	12 (9.0)
	Systemic hypersensitivity	7 (5.2)	0	0	0	7 (5.2)
	Anaphylactic or anaphylactoid reactions	3 (2.2)	0	0	0	3 (2.2)
	Thromboembolic events	0	0	0	0	0
	Anti-FVIII neutralizing antibodies	0	0	0	0	0
	Malignancy (except nonmelanoma skin cancer)	0	0	1 (0.8)	0	1 (0.7)

^aTreatment-related and glucocorticoid-related AEs were assessed by the investigator.

clnfusion-related reactions were defined as AEs occurring during valoctocogene roxaparvovec infusion or within 6 hours post-infusion.

^bThis event was downgraded after the data cutoff (November 15, 2023).

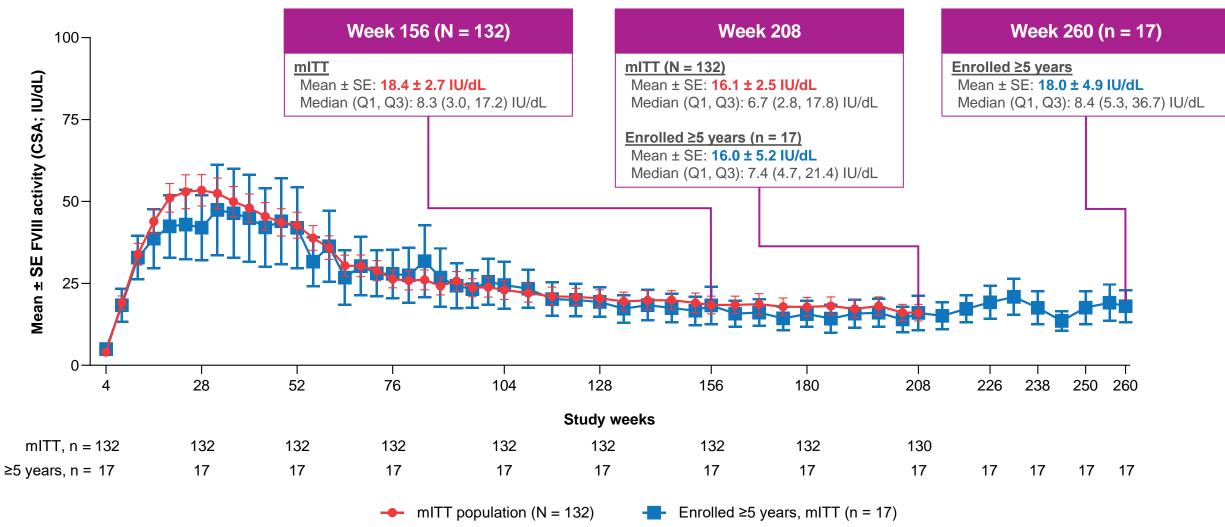
ALT elevation and glucocorticoid use

ITT population

In year 4

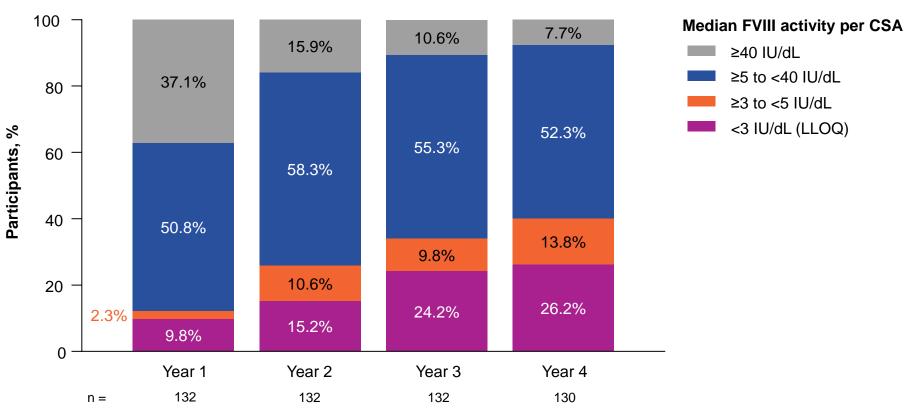
56 (42.7%) participants experienced an ALT elevation, most of which were low-grade and transient

No participants initiated glucocorticoids to manage ALT elevations after week 84


During year 4	With AEs in year 4 (N = 131)		
ALT elevation >ULN, n (%)	21 (16.0)		
ALT elevation >1.5x baseline, n (%)	55 (42.0)		
Used glucocorticoids for any purpose, n (%)	3 (2.3)		
Total duration, weeks, median (range)	1.4 (1.0–12.1)		
Total dose, mg, median (range)	200.0 (200–1475)		
Used glucocorticoids for ALT elevation, n (%)	0 (0.0)		
Total duration, weeks, median (range)	NA		
Total dose, mg, median (range)	NA		

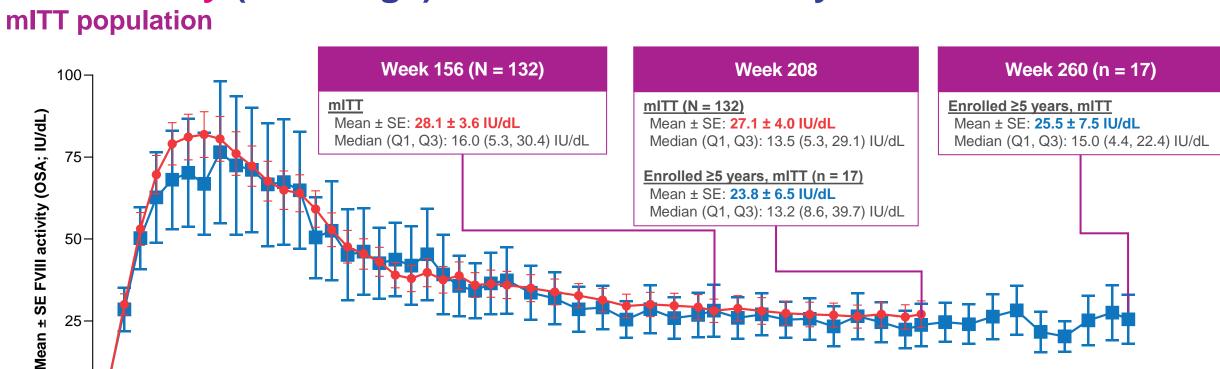
FVIII activity (chromogenic) maintained between years 3 and 4

mITT population


Because 2 participants did not reach year 4 follow-up, week 208 data are based on 130 participants. For participants who discontinued the study, missing FVIII values post-discontinuation were imputed as 0 IU/dL through the data cutoff date.

FVIII activity (chromogenic) ranges at the end of year 4 mITT population

Most participants remain in the mild hemophilia range

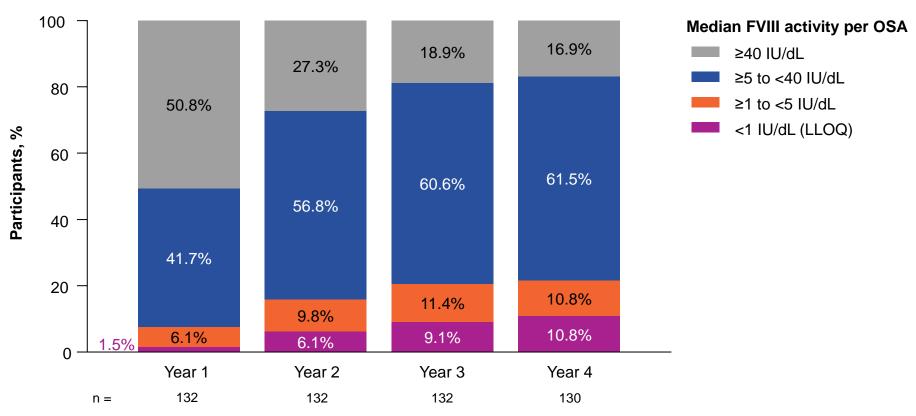


Because 2 participants did not reach year 4 follow-up, week 208 data are based on 130 participants. For participants who discontinued the study, missing FVIII values post-discontinuation were imputed as 0 IU/dL through the data cutoff date.

FVIII activity (one-stage) maintained between years 3 and 4

Study weeks

Because 2 participants did not reach year 4 follow-up, week 208 data are based on 130 participants. For participants who discontinued the study, missing FVIII values post-discontinuation were imputed as 0 IU/dL through the data cutoff date.


250 260

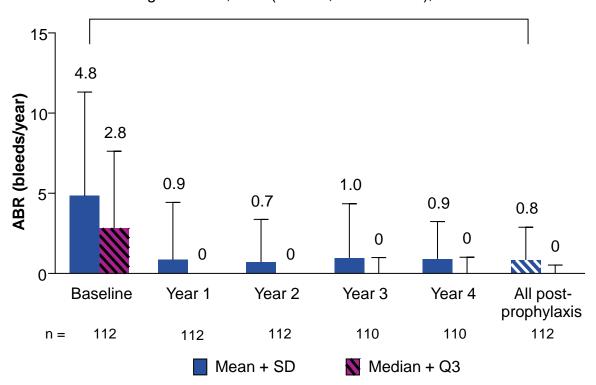
mITT, n = 132

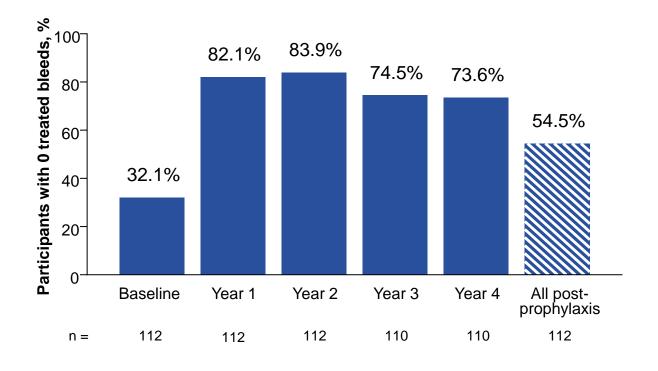
FVIII activity (one-stage) ranges at the end of year 4 mITT population

Most participants remain in the mild hemophilia range

Because 2 participants did not reach year 4 follow-up, week 208 data are based on 130 participants. For participants who discontinued the study, missing FVIII values post-discontinuation were imputed as 0 IU/dL through the data cutoff date.

Reduction in treated bleeds maintained over 4 years

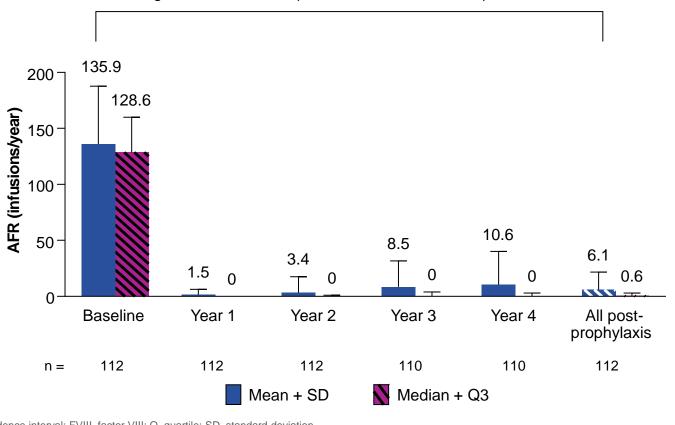

Rollover population


ABR for treated bleeds decreased >80% from baseline during the post-prophylaxis period

In year 4, >70% of participants had no treated bleeds

82.6% reduction

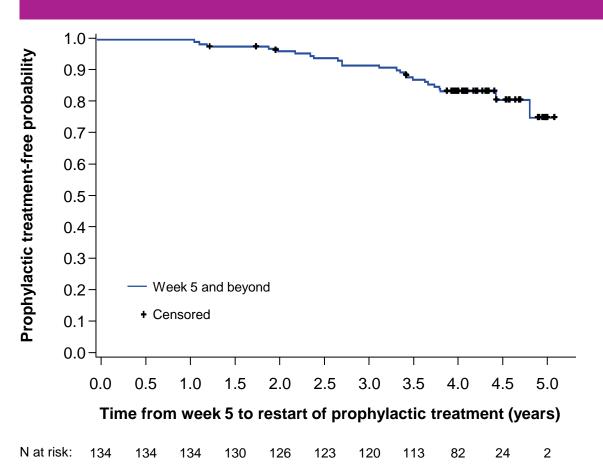
Change in mean, -4.0 (95% CI, -5.2 to -2.8); P < 0.0001


Reduction of FVIII infusion rate maintained through year 4 Rollover population

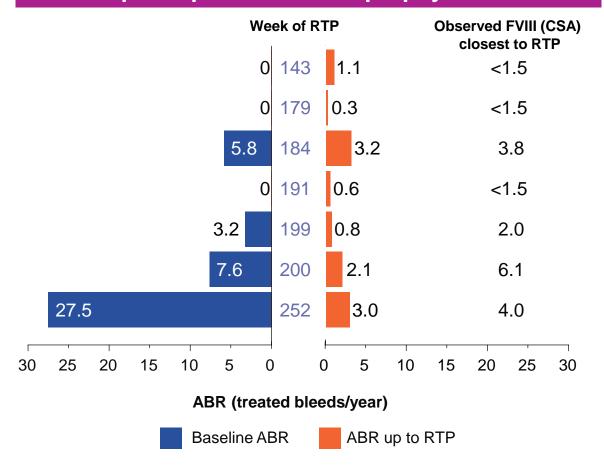
Annualized FVIII infusion rate decreased >95% from baseline during the post-prophylaxis period

95.5% reduction

Change in mean, −129.8 (95% CI, −139.4 to −120.1); *P* <0.0001



Most participants remain off prophylaxis



ITT population

Overall, 24 participants resumed prophylaxis

Since the previous data cutoff, 7 additional participants resumed prophylaxis

Conclusions

A single infusion of valoctocogene roxaparvovec provides durable bleeding protection for 4 years with an acceptable safety profile

No new safety signals

ALT elevation remained the most common AE in year 4; none have required glucocorticoid use since year 2

No FVIII inhibitors or thromboembolic events

FVIII activity was maintained

- FVIII activity remained in the mild hemophilia range
- Slope of decline in FVIII activity continues to approach 0
- Among the 17 participants dosed ≥5 years prior, year 5 values were similar to year 4

Durable hemostatic efficacy

- Rate of treated bleeds in the post-prophylaxis period remains decreased >80% from baseline
- Most participants had no treated bleeds during year 4

Most participants remain off prophylaxis

Decisions to return to prophylaxis were individual and part of a shared decision-making process that considered multiple factors

Acknowledgments

- Thank you to all trial participants, their families, study-site personnel, and investigators
- Funding for this study was provided by BioMarin Pharmaceutical Inc.
- Medical writing support was provided by Amin Ghane, PhD, of AlphaBioCom, a Red Nucleus company, and funded by BioMarin Pharmaceutical Inc.
- Project management support was provided by Gillian Clague, CMPP, of BioMarin Pharmaceutical Inc.

Scan for a digital copy of this presentation

