
Impact of the Enzyme Replacement Therapy, INZ-701, in Children with ENPP1 Deficiency: Experience from An Expanded Access Program

Mattia Parolin MD⁴ Belen Ferrer MD¹, Ruba Rizik MD², Yves Sabbagh PhD³, Kurt Gunter MD³

¹Hospital UIP La Fe., Valencia, Spain; ²Makassed Hospital, Jerusalem; ³Inozyme Pharma, Boston, USA; ⁴University of Padua, Padova, Veneto, Italy

Introduction

- Ectonucleotide pyrophosphatase/phosphodiesterase family member 1 (ENPP1) is a critical enzyme that generates pyrophosphate (PPi), a mineralization inhibitor, and adenosine, a regulator of vascular smooth muscle cell proliferation¹⁻⁴
- Biallelic variants in the ENPP1 gene lead to 2 age-related phenotypes: Generalized arterial calcification of infancy (GACI) and autosomal recessive hypophosphatemic rickets type 2 (ARHR2), which evolve on a phenotypic continuum⁵⁻⁶
- ENPP1 Deficiency typically presents in infancy (GACI) with widespread arterial calcification, severe cardiovascular complications, and high infant mortality (50% in the first 6 months of life)
- All patients with ENPP1 Deficiency who survive beyond infancy develop phosphate-wasting rickets (ARHR2), expected to develop after 1 yr⁵⁻⁶
- ENPP1 Deficiency is associated with other multi-system organ complications, with considerable variability in clinical presentation across individual patients⁵⁻⁶
- There are currently no approved treatments for ENPP1 Deficiency

Treatment & Methods

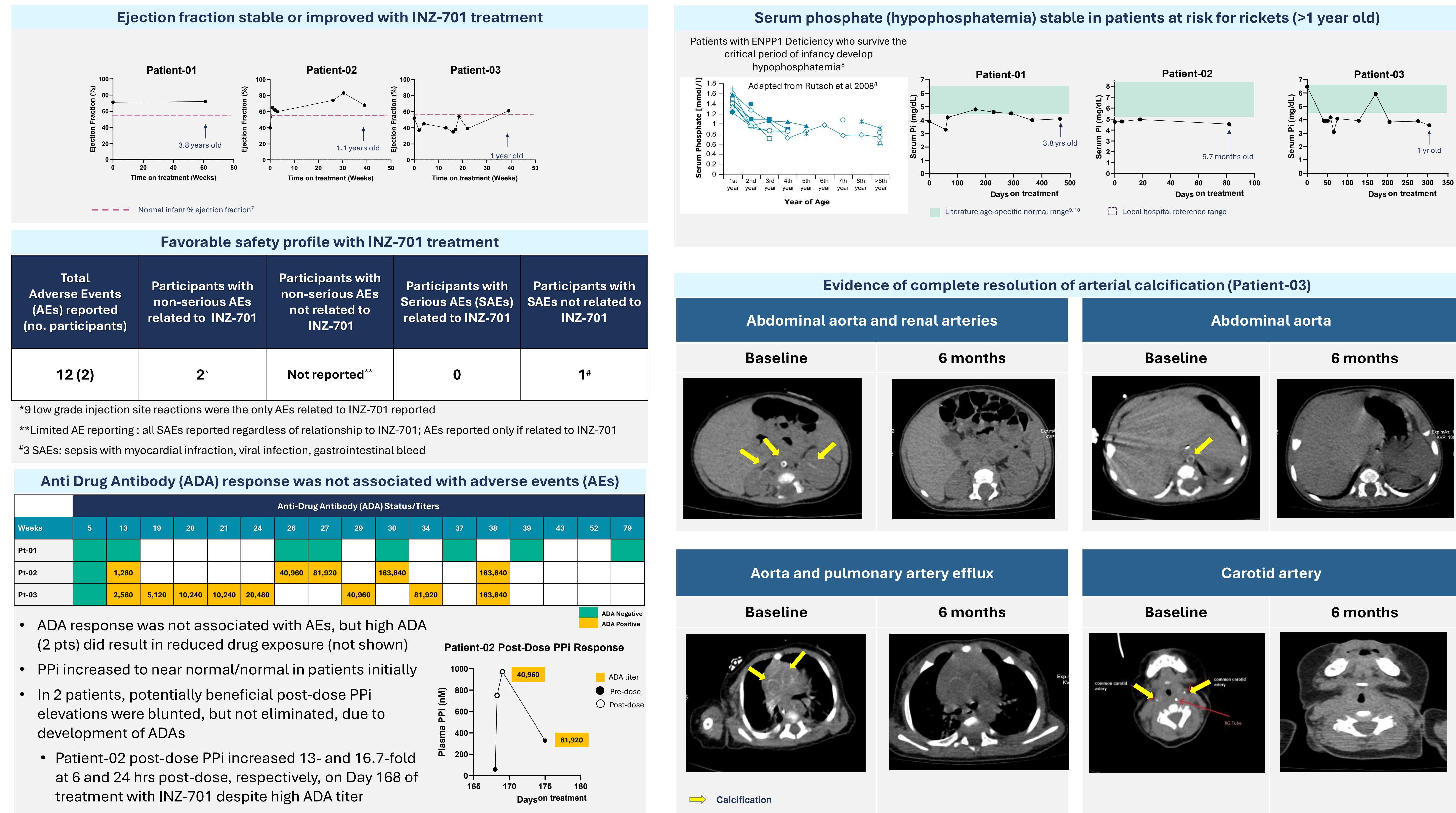
- INZ-701 is an investigational enzyme replacement therapy in clinical development for ENPP1 Deficiency. Administered subcutaneously, it is designed to replace deficient ENPP1 activity and restore balance to the PPi-adenosine pathway, thus addressing calcification, phosphate homeostasis, and intimal proliferation
- Here we report experience in 3 children who received INZ-701 in an expanded access program due to the criticality of their disease, ineligibility for a clinical trial, or geographic distance from trial sites
- Patients received INZ-701 at doses ranging from 0.6 mg/kg twice weekly to 2.4 mg/kg weekly
- Patients were followed for safety; clinical assessments performed as part of routine care were collected
- Data are reported as of 13 December 2024

References

- Ralph D, et al. *Am J Pathol*. 2022;192:762-770
- Oriss IR, et al. *Curr Opin Pharmacol*. 2016;28:57-68
- Nitschke Y, et al. *Exp Mol Med*. 2018;50(10):1-12
- Albayrak G, et al. *Vascular*. 2015;23:124-131
- Ferreira CR, et al. *Ann Rev Pathol Mech Dis*. 2024;19:507-540
- Ferreira CR, et al. *J Bone Miner Res*. 2021;36:2193-2202
- Tissot C, et al. *Front Pediatr*. 2018; Apr 4;6:79
- Adapted from Rutsch F, et al. *Circ Cardiovasc Genet*. 2008;1:133-140
- Specker BL, et al. *Pediatrics* 77:891-896, 1986 (PMID: 3714383)
- American Journal of Kidney Diseases Vol 46, No 4, Suppl 1 (October), 2005: pp S12-S17

Disclosures & Acknowledgements

This expanded access program is sponsored by Inozyme Pharma


YS and KG are employees and stockholders of Inozyme Pharma. MP received an honorarium from Inozyme pharma

The authors would like to thank the patients and their families who are participating in this expanded access program

Results

Two infants and a toddler treated with INZ-701 for a median of 13 (10-18) months						Evidence of improved heart function and controlled hypertension				Reduced or stabilized arterial calcifications, a key driver of mortality				Increased or stabilized hypophosphatemia and early evidence of reduced risk for rickets			
Pt #	Gender	Age at Dx	Age at Tx Start	Time on Tx (mo)	Alive (Y/N)	LVEF		Systemic Hypertension		Arterial Calcifications		Joint/Soft Tissue Calcifications		Hypophosphatemia	Age for Rickets Risk	Rickets	
						BL	Tx	BL	Tx	BL	Tx	BL	Tx				
01	Male	1.5 mo	2.5 yr	18	Y	71%	Stable	Yes	Stable on anti-HTN	Yes (M)	Stable	Yes	Stable	Yes	↑ to normal	Yes	No
02	Female	19 d	3 mo	13	Y	40%, CHF	↑ (68%)	Yes	Stable on anti-HTN	Yes (M)	↓↓	Yes	Stable	Near normal*	Stable	No	NA
03	Female	Birth	2 mo	10	Y	52%	↑ (61%)	Yes	Anti-HTN D/C	Yes (M)	↓↓	Yes	Stable	No	Stable	No	NA

Anti-HTN, anti-hypertension medication; BL, baseline; CHF, congestive heart failure; D/C, discontinued; Dx, diagnosis; LVEF, left ventricular ejection fraction; M, multiple; mo, months; NA, not applicable; NR, not reported; Pt, patient; Tx, treatment with INZ-701; yr, year. *Using literature reported age-specific normal ranges for serum phosphate^{9,10}, the patient is slightly below normal at BL and stable with Tx; using local hospital reference range, patient is slightly above normal at BL and stable with Tx (see serum phosphate graph for patient-02 below).

Key Takeaways

- Children who received INZ-701 under an expanded access program (ongoing) tolerated treatment and showed improvements on disease measures including reduced arterial calcifications, improved heart function and reduced risk for rickets with increased serum phosphate
- There is a critical need for early diagnosis (importantly, genetic testing) and treatment intervention for infants with ENPP1 Deficiency (GACI/ARHR2)